Let $a,b\in[-1,1]$,
then prove or disprove:
$$f(a,b)=3a^3b+3ab^3+18a^2b+18ab^2+12a^3+12b^3+40a^2+40b^2+64ab\ge 0$$
My try: Since \begin{align*} f(a,b)&=3a^3b+3ab^3+18a^2b+18ab^2+12a^3+12b^3+40a^2+40b^2+64ab\\ &=3ab(a^2+b^2)+18ab(a+b)+12(a^3+b^3)+40(a^2+b^2)+64ab \end{align*} if $ab\ge 0$
then \begin{align*}&f(a,b)\ge 9ab(a^2+b^2)+18ab(a+b)+12(a^3+b^3)+40(a^2+b^2)+52ab\\ &=9ab(a^2+b^2)+18ab(a+b)+12(a+b)(a^2+b^2-ab)+40(a^2+b^2)+52ab\\ &=9ab(a^2+b^2)+6(a+b)(2a^2+2b^2+ab)+40(a^2+b^2)+52ab\\ &\ge0 \end{align*}
but for the other case, $ab\le 0$, I can't proceed.
This problem is a follow up from this.