Is there a general relation between $a/b$ and $(a+c)/(b+c)$ where $a,b> 0$ and $c\geq 0$ ?
Is there a general proof for that relation ?
Is there a general relation between $a/b$ and $(a+c)/(b+c)$ where $a,b> 0$ and $c\geq 0$ ?
Is there a general proof for that relation ?
If $\underline{a\ge b}$ then $ac\ge bc$ hence $ab+ac=a(b+c)\ge ab+bc=b(a+c)$ so $$\frac ab\ge \frac{a+c}{b+c}$$
Good observation, these inequalities are quite useful. But you need a little bit more:
You can prove it by multiplying by the common denominator:
$\frac{a+c}{b+c}$ is between $\frac ab$ and $\frac cc=1$, hence whether $\frac{a+c}{b+c}>\frac ab$ or $\frac{a+c}{b+c}<\frac ab$ (or $\frac{a+c}{b+c}=\frac ab$) depends on how $\frac ab$ compares to $1$, i.e. how $a$ compares to $b$.
Suppose $a,b,c \in \mathbb N$, $a < b$.
$$\color{red}{\dfrac ab} = \dfrac{a(b+c)}{b(b+c)} = \dfrac{ab+ac}{b(b+c)} \color{red}{<} \dfrac{ab+bc}{b(b+c)} = \dfrac{b(a+c)}{b(b+c)} = \color{red}{\dfrac{a+c}{b+c}} \color{red}{<} \dfrac{b+c}{b+c} = \color{red}1$$
Suppose $a,b,c \in \mathbb N$, $a > b$.
$$\color{red}{\dfrac ab} = \dfrac{a(b+c)}{b(b+c)} = \dfrac{ab+ac}{b(b+c)} \color{red}{>} \dfrac{ab+bc}{b(b+c)} = \dfrac{b(a+c)}{b(b+c)} = \color{red}{\dfrac{a+c}{b+c}} \color{red}{>} \dfrac{b+c}{b+c} = \color{red}1$$