I would approach this as a simplification problem, which is straightforwardly solved by expanding the definitions from set theory and then simplifying using the rules of logic.
So I would start on the most complex side, and calculate as follows:
\begin{align}
& C \subseteq A \cup B \;\land\; A \cap B \cap C = \varnothing \\
\equiv & \qquad \text{"definitions of $\;\subseteq\;$; basic property of $\;\varnothing\;$"} \\
&
\langle \forall x :: x \in C \;\Rightarrow\; x \in A \cup B \rangle
\;\land\;
\langle \forall x :: \lnot(x \in A \cap B \cap C) \rangle
\\
\equiv & \qquad \text{"definition of $\;\cup\;$, and of $\;\cap\;$ twice; merge quantifications"} \\
& \langle \forall x ::
(x \in C \;\Rightarrow\; x \in A \lor x \in B)
\;\land\;
\lnot(x \in A \land x \in B \land x \in C)
\rangle \\
\equiv & \qquad \text{"logic: write $\;P \Rightarrow Q\;$ as $\;\lnot P \lor Q\;$ in left part;} \\
& \qquad \phantom{\text{"}}\text{DeMorgan for right part} \\
& \qquad \phantom{\text{"}}\text{-- to get everything in similar shape"} \\
& \langle \forall x ::
(x \not\in C \lor x \in A \lor x \in B)
\;\land\;
(x \not\in A \lor x \not\in B \lor x \not\in C)
\rangle \\
\equiv & \qquad \text{"logic: extract common disjunct $\;x \not\in C\;$"} \\
& \langle \forall x :: x \not\in C \lor (
(x \in A \lor x \in B)
\;\land\;
(x \not\in A \lor x \not\in B)
) \rangle \\
\equiv & \qquad \text{"logic: simplify $\;(P \lor Q) \land (\lnot P \lor \lnot Q)\;$ to $\;P \not\equiv Q\;$"} \\
& \langle \forall x :: x \in C \;\Rightarrow\; (
x \in A \not\equiv x \in B
) \rangle \\
\equiv & \qquad \text{"definition of $\;\triangle\;$; definition of $\;\subseteq\;$"} \\
& C \subseteq A \triangle B \\
\end{align}
This completes the proof.
In the last step I used a not-too-well-known definition of set difference:
$$
x \in A \triangle B \;\equiv\; x \in A \not\equiv x \in B
$$