Let $n_{1},\ n_{2},\ n_{3},\ \cdots,\ n_{r}$ be positive integers such that $\gcd(n_{i}, n_{j})=1$ for $1 \le \quad i\neq j \quad \le r$
Then the simultaneous linear congruences $ x\equiv a_i \pmod {n_i} $ for all $1 \le i \le r$ has a solution satisfying all these equations. Moreover the solution is unique modulo $n_1 n_2 n_3 \cdots n_r$.
Proof of Existence. I skip proof of uniqueness. Let $n=n_{1}n_{2}n_{3}\cdots n_{r}$. For each integer $k=1,2,3,\ \cdots,\ r$, let $N_{k} =n_{1}n_{2}n_{3}\cdots n_{k-1}n_{k+1}\cdots n_{r}$ = the product of all the moduli $n_{i}$ with the modulus $n_{k}$ missing.
(1) How can you prefigure to consider this, to start the proof? This product is uncanny?
We are given that $\gcd(n_i, n_j)=1$ for $i\neq j$. By reason of $\gcd(a,b) = \gcd(a,c) =1,$ then $\gcd(a, bc) = 1$. Thence $\gcd(N_k, n_k ) = 1$.
Consider if the linear congruence $N_k x\equiv 1 \pmod{n_k}$ has any solutions.
(2) Where does $N_{k}x\equiv 1 \pmod{n_k}$ hail from? How can you prefigure to consider this?
Since $\gcd(N_k, n_k) = 1$, thence by reason of the Linear Congruence Theorem, the linear congruence $N_{k}x\equiv 1 \pmod {n_k}$ has a unique solution. Dub it $x_k$, thence $$ \color{magenta}{ N_k x_k \equiv 1\pmod{n_k}. \tag{♯} }$$
We construct a solution which satisfies all the given simultaneous linear congruences:
$$ x^* =a_1 N_1 x_1 + a_2 N_2 x_2 + a_3 N_3 x_3 +\cdots + a_r N_r x_r $$
(3) Where does this construction hail from? Can you calculate this?
Let us see if this satisfies the first given linear congruence $ x\equiv a_1 \pmod {n_1} $.
By the above definition of $N_{2},\ N_{3},\ N_{4}, \ldots, N_{r}$ these numbers are multiplies of $n_{1}$.
Therefore $ a_{2}N_{2}x_{2}\equiv 0\pmod {n_1}, a_{3}N_{3}x_{3}\equiv 0 \pmod {n_1} \cdot,\ a_{r}N_{r}x_{r}\equiv 0 \pmod {n_1} $,
Thence if I take $x^*$ to modulus $n_1$, then by cause of $\color{magenta}{(♯)}$ $$\begin{align} x^* & \equiv a_{1}N_{1}x_{1}+a_{2}N_{2}x_{2}+a_{3}N_{3}x_{3}+\cdots+a_{r}N_{r}x_{r} \pmod {n_1} \\ & \equiv a_{1} \color{magenta}{ N_{1}x_{1} }+0+0+\cdots+0 \\ & \equiv a_{1} \color{magenta}{ 1 } \pmod {n_1} \end{align}$$
Hence $x^*$ satisfies the first simultaneous congruence $x\equiv a_1 \pmod {n_1}$. Similarly we can show that the solution constructed satisfies the remaining congruences.