Consider the two Dirichlet characters of $\mathbb{Z}/3\mathbb{Z}$.
$$ \begin{array}{c|ccr} & 0 & 1 & 2 \\ \hline \chi_1 & 0 & 1 & 1 \\ \chi_2 & 0 & 1 & -1 \end{array} $$
I read the L-functions for these series have special values
- $ L(2,\chi_1) \in \pi^2 \sqrt{3}\;\mathbb{Q} $
- $ L(1,\chi_2) \in \pi \sqrt{3}\;\mathbb{Q} $
In other words, these numbers are $\pi^k \times \sqrt{3} \times \text{(rational number)}$. Is there a way to derive this similar to to the famous $\zeta(2) = \tfrac{\pi^2}{6}$ formula?
Here are 14 proofs of $\zeta(2) = \tfrac{\pi^2}{6}$ for reference