The Riemann sum is not only useful in its limit when it approaches the integral.
If $f$ is an nonincreasing function, the lower and upper Riemann sum corresponding to a partitioning of $[1,n]$ at integer points are given by the left and right ends, i.e. we have
$$ \sum_{k=1}^{n-1} f(k)\le\int_1^{n}f(x)\,\mathrm dx\le \sum_{k=2}^{n} f(k)$$
Conversely, we conclude e.g.
$$ \int_1^{n}f(x)\,\mathrm dx+f(1)\le \sum_{k=1}^{n} f(k)\le\int_1^{n}f(x)\,\mathrm dx+f(n)$$
With $f(x)=\frac1{\sqrt x}$, the definite integral is $2\sqrt x\bigr|_1^n=2\sqrt n-2 $, so we get
$$ 2\sqrt n-1\le 1+\frac1{\sqrt 2}+\ldots+\frac1{\sqrt n}\le 2\sqrt n-2+\frac1{\sqrt n},$$
whichis slightly stronger than the problem statement asks for.