If I ask Mathematica to find the eigenvectors and eigenvalues of the matrix:
mat := {{a, b, c}, {b, d, e}, {c, e, f}}
Assuming[{a > 0, b > 0, c > 0, d > 0, e > 0, f > 0}, Eigenvalues[mat]]
Assuming[{a > 0, b > 0, c > 0, d > 0, e > 0, f > 0}, Eigenvectors[mat]]
If returns stuff like
{Root[c^2 d - 2 b c e + a e^2 + b^2 f -
a d f + (-b^2 - c^2 + a d - e^2 + a f + d f) #1 + (-a - d -
f) #1^2 + #1^3 &, 1],
Root[c^2 d - 2 b c e + a e^2 + b^2 f -
a d f + (-b^2 - c^2 + a d - e^2 + a f + d f) #1 + (-a - d -
f) #1^2 + #1^3 &, 2],
Root[c^2 d - 2 b c e + a e^2 + b^2 f -
a d f + (-b^2 - c^2 + a d - e^2 + a f + d f) #1 + (-a - d -
f) #1^2 + #1^3 &, 3]}
But if I ask Wolfram Alpha:

It does it. What am I doing wrong in Mathematica?

Cubics -> Truejust means that the routine should give explicit solutions to cubic equations as opposed to producingRoot[]objects. Similarly forQuartics -> True. – J. M.'s missing motivation Oct 03 '12 at 17:46Eigensystem[]as well. :) – J. M.'s missing motivation Oct 03 '12 at 17:47Quartics -> Truewith Reduce. @J.M True indeed, but there is also an argument to mention aboutReduce,Resolveetc. – Artes Oct 03 '12 at 18:22