Update
On the basis of discussion in comments:
Integrate[r, {t, 0, 2 Pi}, {z, 0, 1}, {r, z^2 - 1, (z + 2)/2 - 3}]
RegionPlot3D[(x^2 - 1)^2 < y^2 + z^2 < ((x + 2)/2 - 3)^2, {x, 0,
1}, {y, -3, 3}, {z, -3, 3}, Mesh -> None, PlotStyle -> Opacity[0.5],
BoxRatios -> Automatic, Boxed -> False, Axes -> False,
Background -> Black]

Original Answer
I am not sure I have correctly interpreted the aim and I am unsure what the "answer" is (volume,surface area etc). However, I post this in caseitmay motivate the desired answer:
The solid of revolution can be plotted (with less than ideal cosmetic result) usingRegionPlot3D:
RegionPlot3D[
0 <= x^2 + y^2 <= 1 &&
1/2 (2 + Sqrt[x^2 + y^2]) <= z <= 2 + x^2 + y^2, {x, -1, 1}, {y, -1,
1}, {z, 1, 4}, PlotPoints -> 50, Mesh -> None, Background -> Black,
Boxed -> False, Axes -> False, PlotStyle -> Opacity[0.6],
PerformanceGoal -> "Quality"]

A more pleasing cosmetic result can be done by just plotting bounding surfaces:
p = {u Cos[v], u Sin[v], u^2 + 2};
c = { Cos[v], Sin[v], u};
l = {u Cos[v], u Sin[v], (u + 2)/2};
Show[ParametricPlot3D[l, {u, 0, 1}, {v, 0, 2 Pi}, Mesh -> None],
ParametricPlot3D[p, {u, 0, 1}, {v, 0, 2 Pi}, Mesh -> None],
ParametricPlot3D[c, {u, 3/2, 3}, {v, 0, 2 Pi}, Mesh -> None,
PlotStyle -> Opacity[0.7]], PlotRange -> {0, 3},
Background -> Black, Boxed -> False, Axes -> False]

Calculating the volume usingImplicitRegion:
vol = Volume[
ImplicitRegion[
0 <= x^2 + y^2 <= 1 &&
1/2 (2 + Sqrt[x^2 + y^2]) <= z <= 2 + x^2 + y^2, {{x, -1,
1}, {y, -1, 1}, {z, 1, 3}}]]
Calculating the volume using integration of cylindrical coordinates:
int = Integrate[
Det[D[{r Cos[t], r Sin[t], z}, {{r, t, z}}]], {r, 0, 1}, {t, 0,
2 Pi}, {z, (r + 2)/2, r^2 + 2}]
