17

When I have an expression such as

(1/4 + I/4) ((1 - 2 I) x + Sqrt[3] y) 

it is hard to get an intuition of the number.

So I want to convert it to the complex exponent notation:

$$\frac{1}{2} \sqrt{\frac{5}{2}} e^{-\frac{i \pi }{12}} x+\frac{1}{2} \sqrt{\frac{3}{2}} e^{\frac{i \pi }{4}} y$$

and I also want to convert $(-1)^{1/4}$ to $\exp \left(\frac{i \pi }{4}\right)$.

How can I do it with Mathematica?

m0nhawk
  • 3,867
  • 1
  • 20
  • 35
cmc
  • 741
  • 1
  • 6
  • 13

3 Answers3

24

This explicitly converts any numeric quantities in the expression to the desired form:

polarForm = Expand[# /. z_?NumericQ :> Abs[z] Exp[I Arg[z]]] &;

e.g.

(1/4 + I/4) ((1 - 2 I) x + Sqrt[3] y) // polarForm

$\frac{1}{2} \sqrt{\frac{5}{2}} e^{\frac{i \pi }{4}-i \text{ArcTan}[2]} x+\frac{1}{2} \sqrt{\frac{3}{2}} e^{\frac{i \pi }{4}} y$

(-1)^(1/4) // polarForm

$e^{\frac{i \pi }{4}}$

Simon Woods
  • 84,945
  • 8
  • 175
  • 324
14

You can use the definitions together with ComplexExpand :

z = (1/4 + I/4) ((1 - 2 I) x + Sqrt[3] y);
abs = ComplexExpand[Abs[z]]
arg = ComplexExpand[Arg[z], TargetFunctions -> {Re, Im}]
(* Sqrt[4 x^2 + (x + Sqrt[3] y)^2]/(2 Sqrt[2]) *)
(* ArcTan[3 x + Sqrt[3] y, -x + Sqrt[3] y] *)

(* check *)
z - abs Exp[I arg] // FullSimplify
(* 0 *)
b.gates.you.know.what
  • 20,103
  • 2
  • 43
  • 84
2

The requisite conversion functions are already included in David Park's Presentations add-on:

<<Presentations`
PolarToExp @ ComplexToPolar[(1/4 + I/4) ((1 - 2 I) x + Sqrt[3] y)]

(The Presentations actually includes a polar form for a complex number of modulus r and argument theta that displays in the form r \[Angle] theta. And ComplexToPolar yields that form. Hence the need for the outside function PolarToExp. Thus there is a distinction made between "polar form" and "exponential form" -- as there should be.)

J. M.'s missing motivation
  • 124,525
  • 11
  • 401
  • 574
murray
  • 11,888
  • 2
  • 26
  • 50