6

What are some good ways, using ParametricPlot3D or otherwise, to visualize a surface (taking 2 real parameters) embedded in a 4-dimensional space?

Specifically, the question concerns the embedding of the Klein Bottle in $ \mathbb R^4 $ given by

 F[u_, v_] := {x[u, v], y[u, v], z[u, v], w[u, v]}

where

 x[u_, v_] := r (Cos[u/2] Cos[v] - Sin[u/2] Sin[2 v])
 y[u_, v_] := r (Sin[u/2] Cos[v] + Cos[u/2] Sin[2 v])
 z[u_, v_] := p Cos[u] (1 + ϵ Sin[v])
 w[u_, v_] := p Sin[u] (1 + ϵ Sin[v]) 

and the positive constants r, p, and ϵ will take convenient values.

J. M.'s missing motivation
  • 124,525
  • 11
  • 401
  • 574
murray
  • 11,888
  • 2
  • 26
  • 50

2 Answers2

9

A simple minded possibility is to use a perspective projection (similar to what I did here). Applied to the 4D Klein bottle, we have

With[{p = 1/3, r = 1/2, ε = -1/3, (* Klein bottle parameters *)
      f = 3, d = 1, (* projection parameters *)
      k = 3 (* perspective over k-th coordinate *)},
     ParametricPlot3D[Function[pt, f Delete[pt, k]/(d - Extract[pt, k])] @
                      {r (Cos[u/2] Cos[v] - Sin[u/2] Sin[2 v]),
                       r (Sin[u/2] Cos[v] + Cos[u/2] Sin[2 v]),
                       p Cos[u] (1 + ε Sin[v]), p Sin[u] (1 + ε Sin[v])},
                      {u, 0, 2 π}, {v, 0, 2 π},
                      Mesh -> False, PlotPoints -> 55]]

projection of 4D Klein bottle

In addition to perspective projection, one might want to also apply a preliminary rotation (via e.g. RotationTransform[]) to the parametric equations before projecting over one of the axes, adding another element of flexibility.

J. M.'s missing motivation
  • 124,525
  • 11
  • 401
  • 574
5

There are an infinite number of projections of multidimensional figures on 3D. I will show one variant that is suitable for this case

F[u_, v_] := {x[u, v], y[u, v], z[u, v], t[u, v]}
x[u_, v_, r_] := r (Cos[u/2] Cos[v] - Sin[u/2] Sin[2 v])
y[u_, v_, r_] := r (Sin[u/2] Cos[v] + Cos[u/2] Sin[2 v])
z[u_, v_, p_, \[Epsilon]_] := p Cos[u] (1 + \[Epsilon] Sin[v])
t[u_, v_, p_, \[Epsilon]_] := p Sin[u] (1 + \[Epsilon] Sin[v])

KleinBottle4D[p_, r_, \[Epsilon]_, \[Alpha]_] := 
 ParametricPlot3D[{x[u, v, r], y[u, v, r], 
   Cos[\[Alpha]]*z[u, v, p, \[Epsilon]] + 
    Sin[\[Alpha]]*t[u, v, p, \[Epsilon]]}, {u, 0, 2*Pi}, {v, 0, 2*Pi},
   ColorFunction -> Hue, PlotRange -> All, Mesh -> None]
KleinBottle4D[1/3, 1/2, -1/3, Pi/4]

fig1

Alex Trounev
  • 44,369
  • 3
  • 48
  • 106
  • That looks suspiciously like the 3D object in the answer by @J. M. is somewhat okay, but it's not yet clear to my why that's so. – murray Sep 24 '18 at 15:56
  • 1
    @murray, it still is the same surface; just a different projection. To use a 3D->2D analogy: a cube can have different shadows depending on how it's positioned against the light, but it's still the same cube. – J. M.'s missing motivation Sep 24 '18 at 16:10
  • How can one get such a 3D projection of the 4D embedded Klein bottle that is the usual "beer-bottle" surface (https://upload.wikimedia.org/wikipedia/commons/8/8a/Surface_of_Klein_bottle_with_traced_line.svg), that is, the usual picture of an immersed image of the Klein bottle in $\mathbb{R}^3$? – murray Oct 08 '18 at 16:23