I use a FindRoot that doesn't find the right solution in some range, the FindRoot is the following:
tabexp = ParallelTable[{Temp,V /.FindRoot[Ifix - Isis[V/2, 0.2, Temp, 1.5, 1.4, \[Gamma]0, \[Gamma]0,RSISIS], {V, 4.05 d0Al[1.5]/q, 1. d0Al[1.5]/q,4.1 d0Al[1.5]/q}, AccuracyGoal -> 25, PrecisionGoal -> 25,MaxIterations -> 2000]}, {Temp, 0.2, 1.25, 0.9/40}];
This is the plot of the FindRoot output tabexp:
The point is that the graphical solution is easy:
Plot[Evaluate[Table[{Ifix -Isis[V/2 d0Al[1.5]/q, 0.2, Tx, 1.5, 1.4,[Gamma]0, \[Gamma]0,RSISIS]}, {Tx, 0.6, 0.8, 0.05}]], {V, 1 , 4.3},PlotRange -> All]
I don't understand why it's not working properly. If you need all the code it is the following:
q = 1.602176487` 10^-19;
kB = 1.3806504` 10^-23;
\[HBar] = 1.054571628251774` 10^-34;
TcAluminio = 1.55;
d0Al[TcAl_] := 1.764 kB TcAl;
d0max = 1.764 kB 1.65;
delta[T_] := Tanh[1.74 Sqrt[1/T - 1]];
\[CapitalDelta]Al[T_, TcAl_] := delta[T/TcAl] d0Al[TcAl];
ngammaAl[energy_, T_, gamma_, TcAl_] :=
Abs[Re[(energy + I gamma d0Al[TcAl])/
Sqrt[(energy + I gamma d0Al[TcAl])^2 - \[CapitalDelta]Al[T,
TcAl]^2]]];
Isis[V_, T1_, T2_, TcAlP_, TcAlI_, gamma1_, gamma2_, Rjunction_] :=
Re[1/( q Rjunction)
NIntegrate[
ngammaAl[energy - q V, T1, gamma1, TcAlP] ngammaAl[energy, T2,
gamma2,
TcAlI] (1/(Exp[(energy - q V)/(kB T1)] + 1) - 1/(
Exp[energy/(kB T2)] +
1)), {energy, -10 d0max, -\[CapitalDelta]Al[T1,
TcAlP], \[CapitalDelta]Al[T2, TcAlI], \[CapitalDelta]Al[T2,
TcAlI], \[CapitalDelta]Al[T1, TcAlP], 10 d0max},
MinRecursion -> 4,
Method -> {"GlobalAdaptive", "MaxErrorIncreases" -> 100000,
"SymbolicProcessing" -> 0, "SingularityHandler" -> None},
PrecisionGoal -> 5]];
\[Gamma]0 = 10^-3;
RSISIS = 55000;
Ifix = Isis[0.0006/2, 1.1, 1.1, 1.5, 1.4, \[Gamma]0, \[Gamma]0,
RSISIS]
Thanks in advance and sorry for the bad English.


