Manipulate[
Column[{
StringForm["roots = ``",
roots = x /. NSolve[a*x^4 + b*x^2 + c*x + 2 == 0, x]],
Spacer[5],
Plot[a*x^4 + b*x^2 + c*x + 2, {x, -20, 20},
PlotRange -> 20,
Epilog -> {Red, AbsolutePointSize[4],
Tooltip[Point[{#, 0}], #] & /@ Cases[roots, _Real]}]}],
{a, -1, 1, 0.02, Appearance -> "Labeled"},
{b, -10, 10, 0.2, Appearance -> "Labeled"},
{c, -10, 10, 0.2, Appearance -> "Labeled"},
ControlPlacement -> Right]

EDIT: If you also wish to see the roots in the complex plane
Manipulate[
Column[{
StringForm["roots = ``",
roots = x /. NSolve[a*x^4 + b*x^2 + c*x + 2 == 0, x]],
Spacer[5],
Plot[a*x^4 + b*x^2 + c*x + 2, {x, -20, 20},
PlotRange -> 20,
AxesLabel -> (Style[#, 14, Bold] & /@ {"x", "f[x]"}),
Epilog -> {Red, AbsolutePointSize[4],
Tooltip[Point[{#, 0}], #] & /@ Cases[roots, _Real]}],
Spacer[5],
ListPlot[Tooltip /@ ReIm /@ roots,
PlotStyle -> Directive[Red, AbsolutePointSize[4]],
PlotRange -> {{-20, 20}, {-20, 20}},
AxesLabel -> (Style[#, 14, Bold] & /@ {Re, Im})]}],
{a, -1, 1, 0.02, Appearance -> "Labeled", ImageSize -> Small},
{b, -10, 10, 0.2, Appearance -> "Labeled", ImageSize -> Small},
{c, -10, 10, 0.2, Appearance -> "Labeled", ImageSize -> Small},
ControlPlacement -> Right]

roots[a_, b_, c_] := x /. Solve[a*x^4 + b*x^2 + c*x + 2 == 0, x]– Daniel Lichtblau Dec 04 '18 at 20:09