A polynomial coefficient matrix:
mat =
CoefficientList[3 + 5 x^3 + 4 y^3 + 2 x + 6 x^2 y + 7 x y^2 + 8 x y, {x, y}];
\begin{equation} \left( \begin{array}{cccc} 3 & 0 & 0 & 4 \\ 2 & 8 & 7 & 0 \\ 0 & 6 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ \end{array} \right) \end{equation}
Another matrix:
list =
{{a1, b1, c1, d1}, {e1, f1, g1, h1}, {i1, j1, k1, l1}, {m1, n1,o1, p1}};
whose matrix form is: \begin{equation} \left( \begin{array}{cccc} a1 & b1 & c1 & d1 \\ e1 & f1 & g1 & h1 \\ i1 & j1 & k1 & l1 \\ m1 & n1 & o1 & p1 \\ \end{array} \right) \end{equation}
How can I generate the following polynomial automatically?
$\text{a1}+\text{d1} y^3+\text{e1} x+\text{f1} x y+\text{g1} x y^2+\text{j1} x^2 y+\text{m1} x^3$
{{a1, b1, c1, d1}, {e1, f1, g1, h1}, {i1, j1, k1, l1}, {m1, n1, o1, p1}}.y^Range[0, 3].x^Range[0, 3]– Michael E2 Jan 13 '19 at 00:41CoefficientListfor how to recover the polynomial from the matrix: Look forFold[FromDigits[Reverse[#1], #2] &, %, {x, y}]. – Michael E2 Jan 13 '19 at 00:42Fold[FromDigits[Reverse[#1], #2] &, Unitize@mat * list, {x, y}]? – Michael E2 Jan 13 '19 at 01:43