What's the best workaround for this limitation:
RegionBounds[
BoundaryDiscretizeGraphics[Graphics3D[{Cone[], Cuboid[]}]]]
What's the best workaround for this limitation:
RegionBounds[
BoundaryDiscretizeGraphics[Graphics3D[{Cone[], Cuboid[]}]]]
RegionBounds@RegionUnion[
BoundaryDiscretizeRegion[Cone[]],
BoundaryDiscretizeRegion[Cuboid[]]
]
{{-1., 1.}, {-1., 1.}, {-1., 1.}}
Charting`get3DPlotRange[
Show[Graphics3D[{Cone[], Cuboid[]}], PlotRangePadding -> None]]
(* {{-1., 1.}, {-1., 1.}, {-1., 1.}} *)
See How to get the real PlotRange using AbsoluteOptions?
If "arbitrary 3d graphics" includes of objects of heterogeneous dimensions, then get3DPlotRange still works:
Charting`get3DPlotRange[
Show[Graphics3D[{Cone[], Cuboid[], Point[{0, 0, -3}],
Line[{{1, 0, 0}, {-2, 0, 0}}]}], PlotRangePadding -> None]]
(* {{-2., 1.}, {-1., 1.}, {-3., 1.}} *)
MinMax /@ Transpose[RegionBounds /@ {Cone[], Cuboid[]}]
{{-1, 1}, {-1, 1}, {-1, 1}}
RegionBounds@RegionUnion[ BoundaryDiscretizeRegion[Cone[]], BoundaryDiscretizeRegion[Cuboid[]] ]? – Henrik Schumacher Jan 14 '19 at 15:50DiscretizeRegiondocs says "DiscretizeGraphics for Graphics3D with multiple volume primitives is not supported", unfortunately. Hence the need for a workaround I suppose :) – Carl Lange Jan 14 '19 at 15:56