Using @kglr's projectToWalls:
(* https://mathematica.stackexchange.com/a/199613/4999 *)
ClearAll[projectToWalls]
projectToWalls =
Module[{pr = PlotRange[#]},
Normal[#] /.
Line[x_, ___] :> {Line[x],
Line[x /. {a_, b_, c_} :> {pr[[1, 1]], b, c}],
Line[x /. {a_, b_, c_} :> {a, pr[[2, 2]], c}],
Line[x /. {a_, b_, c_} :> {a, b, pr[[3, 1]]}]}] &;
cp = ContourPlot3D[
200.456 + 2.34010^10x^2 + 7.9910^7y^2 +
y(2.8010^(-9) - 1.173510^6z) - 29150.591z + 1.89510^6z^2 +
x(-4.32910^6 - 9.73110^7y + 3.13510^8*z) == 1, {x, 0.00008,
0.00011}, {y, -0.00011, 0.00022}, {z, -0.0015, 0.0015}];
projectToWalls@cp

Update:
If range of cp on axes is actually desired (since an ellipsoid is path-connected):
PlotRange@Show[cp, PlotRangePadding -> 0, PlotRange -> All]
(*
{{ 0.0000820059, 0.0001018},
{-0.0000560249, 0.000169893},
{-0.000991714, 0.00119972}}
*)
This is a numerical approximation. For more accuracy, increase PlotPoints or MaxRecursion. With MaxRecursion -> 4, we get the following:
{{ 0.0000819949, 0.000101789},
{-0.000055904, 0.000169853},
{-0.000990615, 0.00119862}}
Second update:
For more control of what is projected (requested in a comment):
ClearAll[projectToWalls]
projectToWalls[g_Graphics3D, prim_ : Line] :=
Module[{pr = PlotRange[g]},
Normal[g] /. (p : prim)[x_, r___] :> {p[x, r],
p[x /. {a_?NumericQ, b_?NumericQ, c_?NumericQ} :>
{pr[[1, 1]], b, c}],
p[x /. {a_?NumericQ, b_?NumericQ, c_?NumericQ} :>
{a, pr[[2, 2]], c}],
p[x /. {a_?NumericQ, b_?NumericQ, c_?NumericQ} :>
{a, b, pr[[3, 1]]}]}];
Example from comment:
cp = Show[
ContourPlot3D[
200.456 + 2.340*10^10*x^2 + 7.99*10^7*y^2 +
y*(2.80*10^(-9) - 1.1735*10^6*z) - 29150.591*z +
1.895*10^6*z^2 +
x*(-4.329*10^6 - 9.731*10^7*y + 3.135*10^8*z) == 1, {x, 0.00008,
0.00011}, {y, -0.00011, 0.00022}, {z, -0.0015, 0.0015},
ContourStyle -> Directive[{Orange, Opacity[0.5]}], Mesh -> None],
Graphics3D[{Black, PointSize[0.02],
Point[{9.19*10^(-5), 5.67*10^(-5), 10.78*10^(-5)}]}]];
projectToWalls[cp, Polygon | Point]
Notes: Point as well as geometric 3D shapes can be rendered in Graphics3D only as 3D shapes, not flat projections. To get a 2D projection would require subroutines that discretize these objects to polygons that are projected flat against the bounding box. Projecting polygons results in overlapping polygons that do not look good usually.