When integrate the indefinite integral Cos[nx]Cos[kx] about x, where both k and n are positive integer, the result is Pi when n equals to k and 0 when n is unequal to k. However, the code
sol = Integrate[Cos[n*x]*Cos[k*x], {x, -Pi, Pi},
Assumptions -> n ∈ Integers && k ∈ Integers && n > 0 && k > 0]
gives the result (k Sin[π k + π n] - n Sin[π k + π n] +
k Sin[π k - π n] + n Sin[π k - π n])/(k^2 - n^2).
And then use the Simplify function,
Simplify[sol, Assumptions -> n ∈ Integers && k ∈ Integers && n > 0 && k > 0]
gives the result 0. Shouldn't that Integrate returns a Piecewise function like Piecewise[{{Pi, n == k}, {0, n != k}}] instead?
LimittoLimit[sol, k -> n, Assumptions -> Element[n, Integers]]– Bob Hanlon Jan 24 '19 at 05:41