Though DSolve can't handle the problem at the moment, the symbolic solution can be found with the help of finite Fourier cosine transform and its inversion:
eqn = D[u[x, t], {t, 2}] + 2 D[u[x, t], {t, 1}] + u[x, t] == D[u[x, t], {x, 2}];
bc = {Derivative[1, 0][u][0, t] == 0, Derivative[1, 0][u][2 π, t] == 0};
ic = {u[x, 0] == Cos[x],
Derivative[0, 1][u][x, 0] ==
Simplify`PWToUnitStep@PiecewiseExpand[Abs[Cos[x/2]], Reals]};
(* Definition of finiteFourierCosTransform isn't included in this post,
please find it in the link above. *)
tsetlst = Assuming[{n > 0 && n != 2},
Simplify@finiteFourierCosTransform[{eqn, ic}, {x, 0, 2 Pi}, #]] /.
Rule @@@ bc & /@ {0, 2, n} /. HoldPattern@finiteFourierCosTransform[a_, __] :> a
tsollst = u[x, t] /. First@DSolve[#, u[x, t], t] & /@ tsetlst
tsol = Piecewise[{tsollst // Most, {n == 0, n == 2}} // Transpose, tsollst // Last] //
FullSimplify
mid = inverseFiniteFourierCosTransform[tsol, n, {x, 0, 2 Pi}]
sol = (mid[[2]] /. {n, C} -> {n, 2, 2} // ReleaseHold) + mid /. {{n, C} -> {n, 3, C},
HoldPattern@Piecewise[, a] :> a}
$$u(x,t) = \frac{2 e^{-t} t}{\pi }+\frac{e^{-t} \cos (x) (4 \sin (t)+3 \pi (\sin (t)+\cos (t)))}{3 \pi }+\sum _{n=3}^\infty \frac{\cos \left(\frac{n x}{2}\right) \left(8 \cos \left(\frac{n \pi }{2}\right) \sin \left(\frac{n t}{2}\right) (\sinh (t)-\cosh (t) )\right)}{n \left(n^2-1 \right) \pi}$$
Let's compare it with the numeric solution:
testfunc = Function[{x, t}, #] &[sol /. C -> 30 // ReleaseHold];
mol[n_Integer, o_: "Pseudospectral"] := {"MethodOfLines",
"SpatialDiscretization" -> {"TensorProductGrid", "MaxPoints" -> n,
"MinPoints" -> n, "DifferenceOrder" -> o}}
nsol = NDSolveValue[{eqn, ic, bc}, u, {t, 0, 4}, {x, 0, 2 Pi},
Method -> mol[50, 4]];
Manipulate[Plot[{testfunc[x, t], nsol[x, t]}, {x, 0, 2 Pi}, PlotRange -> 1,
PlotStyle -> {Automatic, {Red, Thick, Dashed}}], {t, 0, 4}]

Remark
Abs is transformed to UnitStep so DSolve can solve faster.
Finite Fourier cosine transform for $n=0$ and $n=2$ cases have been calculated separately because currently finiteFourierCosTransform, which is built on Integrate, can't handle these two special cases properly when they're hidden behind the symbolic n.
sol is just a simplified version of mid.
Rectangle[{0, 2 \[Pi]}, {0, Infinity}]makes no sense for Mathematica. In particular,Graphics[Rectangle[{0, 2 \[Pi]}, {0, Infinity}]]produces an error message. – user64494 May 08 '20 at 08:17