3

This is my first topic and I continue work on that: Lagrangian of three-mass system with Mathematica

I found interesting problem here, and try reproduce results.

enter image description here

Assumption: $d_1=0$

Algorithm:

  1. Write Lagrangian:

$L=W_k-W_p=\frac{J_1 \omega_1^2}{2}+\frac{J_2 (\frac{r_2}{r_1}\omega_2)^2}{2}-\frac{c_1(\phi_1-\frac{r_2}{r_1}\phi_2)^2}{2}$

where $W_k$ and $W_n$ - kinetic and potential energy.

  1. Using formula:

enter image description here

find equation of motion for coordinates:

$\frac{d}{dt}\frac{\partial L}{\partial \dot{\phi_1}}-\frac{\partial L}{\partial \phi_1}=0$

$\frac{d}{dt}\frac{\partial L}{\partial \dot{\phi_2}}-\frac{\partial L}{\partial \phi_2}=0$

I implemented all this in Mathematica:

Clear["Derivative"];

ClearAll["Global`*"];

Remove[c, J, r];

L = Sum[1/2 Subscript[J, i] D[Subscript[[Phi], i][t], t]^2, {i, 2}] - Sum[1/2 Subscript[c, 10 i + i + 1] (Subscript[[Phi], i][t] - Subscript[[Phi], i + 1][t])^2, {i, 1}];

L = -(1/2) Subscript[c, 12] (Subscript[[Phi], 1][ t] - ((Subscript[r, 2]/Subscript[r, 1]) Subscript[[Phi], 2][ t]))^2 + 1/2 Subscript[J, 1] Derivative[1][Subscript[[Phi], 1]][t]^2 + 1/2 Subscript[J, 2] ((Subscript[r, 2]/Subscript[r, 1]) Derivative[1][ Subscript[[Phi], 2]][t])^2;

eq1 = D[D[L, Derivative[1][Subscript[[Phi], 1]][t]], t] - D[L, Subscript[[Phi], 1][t]] eq2 = D[D[L, Derivative[1][Subscript[[Phi], 2]][t]], t] - D[L, Subscript[[Phi], 2][t]]

But the results didn't match the picture. Where did I go wrong?

enter image description here

EDIT:

There is my code for three-mass system:

Clear["Derivative"]

ClearAll["Global`*"]

Remove[c, J]

(***Gear ratios)

gr = {Subscript[n, 1], Subscript[n, 2]};

L = Sum[1/2 Subscript[J, i] D[Subscript[[Phi], i][t], t]^2, {i, 3}] - Sum[1/2 Subscript[c, 10 i + i + 1] (Subscript[[Phi], i][t]/gr[[i]] - Subscript[[Phi], i + 1][t])^2, {i, 2}];

eq1 = D[D[L, Derivative[1][Subscript[[Phi], 1]][t]], t] - D[L, Subscript[[Phi], 1][t]] == Subscript[T, 1][t] // Simplify; eq20 = D[D[L, Derivative[1][Subscript[[Phi], 2]][t]], t] - D[L, Subscript[[Phi], 2][t]] == Subscript[T, 2][t] // Simplify; eq3 = D[D[L, Derivative[1][Subscript[[Phi], 3]][t]], t] - D[L, Subscript[[Phi], 3][t]] == Subscript[T, 3][t] // Simplify;

eq2 = ApplySides[Expand[Subscript[n, 1]^2*#1] &, eq20 /. Subscript[n, 1] -> 1/Subscript[n, 1]];

dtn
  • 2,394
  • 2
  • 8
  • 18

1 Answers1

5
gr =.; (*Subscript[r, 2]/Subscript[r, 1]*) 
igr =.; (*Subscript[r, 1]/Subscript[r, 2]*)
twist = -gr*Subscript[ϕ, 2][t] - Subscript[ϕ, 1][t]; 

L = Sum[(1/2)*Subscript[J, i]*D[Subscript[ϕ, i][t], t]^2, {i, 2}] - 
    (1/2)*Subscript[c, 1]*twist^2; 

eq1 = D[D[L, Derivative[1][Subscript[ϕ, 1]][t]], t] - D[L, Subscript[ϕ, 1][t]] == 
      Subscript[T, 1][t] + Subscript[d, 1]*D[twist, t]//Expand
eq20 = D[D[L, Derivative[1][Subscript[ϕ, 2]][t]], t] - D[L, Subscript[ϕ, 2][t]] == 
      Subscript[T, 2][t] + Subscript[d, 1]*D[twist, t]*gr; 
eq2 = ApplySides[Expand[igr^2*#1] & , eq20 /. gr -> 1/igr]

$c_1 \text{gr} \phi _2(t)+c_1 \phi _1(t)+J_1 \phi _1''(t)=-d_1 \text{gr} \phi _2'(t)-d_1 \phi _1'(t)+T_1(t)\\c_1 \text{igr} \phi _1(t)+c_1 \phi _2(t)+\text{igr}^2 J_2 \phi _2''(t)=-d_1 \text{igr} \phi _1'(t)-d_1 \phi _2'(t)+\text{igr}^2 T_2(t)$

Suba Thomas
  • 8,716
  • 1
  • 17
  • 32
  • How can this approach be extended to the case of three-mass systems? – dtn Jun 28 '21 at 15:52
  • just for example: https://i.stack.imgur.com/qPodJ.gif – dtn Jun 28 '21 at 16:08
  • and it is natural that the gear ratios $N_1=\frac{\omega_1}{\omega_2}$ and $N_2=\frac{\omega_2}{\omega_3}$ – dtn Jun 28 '21 at 16:13
  • 2
    It doesn't matter if it's two, three or more masses. Just add the additional terms to the Lagrangian and the generalized forces, and use the gear ratios in terms of the radii to eliminate the intermediate velocities. – Suba Thomas Jun 28 '21 at 16:38
  • I will try to do it myself, only instead of gear ratios I will use not the ratio of the radii, but simply the designations of the gear ratios $N_1...N_3$ – dtn Jun 28 '21 at 18:42
  • Please see my code for a three-mass system.

    I also assumed that the rigid shafts are installed after the gearboxes, and not in front of them.

    The only thing that didn't work for me was to apply a line of code. ApplySides[Expand[igr^2*#1] & , eq20 /. gr -> 1/igr] For some reason, the expression is not modified with it.

    – dtn Jun 28 '21 at 19:05
  • 1
    Please add a figure to show what you mean by 'after the gearboxes'. ApplySides has been in the WL since 11.3. What is the output you are getting and is it the same as eq20? And what version are you using and which OS? – Suba Thomas Jun 28 '21 at 22:22
  • "after gearboxes" https://i.stack.imgur.com/nNEzU.png – dtn Jun 29 '21 at 04:33
  • eq1 = D[D[L, Derivative[1][Subscript[\[Phi], 1]][t]], t] - D[L, Subscript[\[Phi], 1][t]] == Subscript[T, 1][t] // Simplify; eq20 = D[D[L, Derivative[1][Subscript[\[Phi], 2]][t]], t] - D[L, Subscript[\[Phi], 2][t]] == Subscript[T, 2][t] // Simplify; eq3 = D[D[L, Derivative[1][Subscript[\[Phi], 3]][t]], t] - D[L, Subscript[\[Phi], 3][t]] == Subscript[T, 3][t] // Simplify;

    eq2 = ApplySides[Expand[Subscript[n, 1]^2*#1] &, eq20 /. Subscript[n, 1] -> 1/Subscript[n, 1]];

    – dtn Jun 29 '21 at 05:05
  • Help us figure it out, please. We discussed the issue with one user and were at a dead end. https://chat.stackexchange.com/rooms/130663/discussion-between-cesareo-and-dtn – dtn Oct 22 '21 at 04:31