Here is a brute-force approach (which is essentially a poor copy of @ubpdqn 's answer):
SeedRandom[12345];
(* Set parameters *)
f[r_, {x_, y_}] := r (x^2 + x y + y^2)
r1 = 0.1;
r2 = 0.3;
(* Number of points to select *)
n = 50;
(* Array to store sequential plots *)
plt = ConstantArray[0, n];
(* Initial point )
pts = {RandomVariate[UniformDistribution[{0, 1}], 2]};
noPts = {};
m = 100; ( Fineness of grid showing area where no points can be selected )
( Create a list of points on a fine grid that can no longer be selected *)
Do[Do[status = True;
If[f[r1, {i/m, j/m}] <= Norm[{i/m, j/m} - pts[[1]]] <= f[r2, {i/m, j/m}], status = False];
If[status == False, noPts = Join[noPts, {{i/m, j/m}}]], {i, m}], {j, m}];
plt[[1]] =
ListPlot[{pts, noPts, pts}, PlotRange -> {{0, 1}, {0, 1}}, AspectRatio -> 1,
PlotStyle -> {{Blue, PointSize[0.01]}, {Gray, PointSize[0.005]}, {Red, PointSize[0.02]}}, Frame -> True];
(* Selete points 2 through n )
Do[good = False; ( Initial status of potential sample point )
While[! good,
{x0, y0} = RandomVariate[UniformDistribution[{0, 1}], 2];
status = True; (
Assume status of potential sample point is true until proven otherwise )
( Check on relationship with all other points *)
Do[If[f[r1, {x0, y0}] <= Norm[{x0, y0} - pts[[j]]] <=
f[r2, {x0, y0}], status = False], {j, 1, h - 1}];
If[status, good = True; pts = Join[pts, {{x0, y0}}]]];
(* Highlight locations where the next point cannot occur *)
noPts = {};
m = 100;
Do[Do[status = True;
Do[If[f[r1, {i/m, j/m}] <= Norm[{i/m, j/m} - pts[[k]]] <= f[r2, {i/m, j/m}], status = False],
{k, h}];
If[status == False, noPts = Join[noPts, {{i/m, j/m}}]], {i, m}], {j, m}];
(* Create plot of currently sampled points and the area that can no longer be sampled *)
plt[[h]] = ListPlot[{pts, noPts, {pts[[h]]}}, PlotRange -> {{0, 1}, {0, 1}},
AspectRatio -> 1,
PlotStyle -> {{Blue, PointSize[0.01]}, {Gray, PointSize[0.005]}, {Red, PointSize[0.02]}}, Frame -> True],
{h, 2, n}]

The red dot represents the currently sampled point and the blue dots are all of the previously sampled points. The smaller gray dots represent the area than can no longer be sampled due to the restrictions imposed.
Integrate[x^2 + x y + y^2, {x, 0, 1}, {y, 0, 1}] = 11/12. – JimB Apr 08 '22 at 21:30