I am trying to plot this function numerically.
R2T = (0.0634921 (25. -10. R+1. R^2) (-125.-75. R+153.75 R^2+79. R^3-30.75 R^4-3. R^5+1. R^6) (625. +812.5 R-631.25 R^2-1008.12 R^3+31. R^4+201.625 R^5-25.25 R^6-6.5 R^7+1. R^8) (-4.88281*10^6-732422. R+1.95312*10^7 R^2+1.49902*10^6 R^3-3.08374*10^7 R^4+591528. R^5+2.40886*10^7 R^6-3.43795*10^6 R^7-9.34819*10^6 R^8+2.80522*10^6 R^9+1.41155*10^6 R^10-761365. R^11+44421.9 R^12+35889.5 R^13-7601.87 R^14+108.687 R^15+139.25 R^16-19.875 R^17+1. R^18+R (-976562.-585937. R+3.30078*10^6 R^2+1.98437*10^6 R^3-4.15088*10^6 R^4-2.42229*10^6 R^5+2.38528*10^6 R^6+1.25652*10^6 R^7-647720. R^8-251304. R^9+95411.2 R^10+19378.3 R^11-6641.41 R^12-635. R^13+211.25 R^14+7.5 R^15-2.5 R^16) Cos[0.666667 \[Phi]]) (25. +1. R^2-10. R Cos[(2 \[Phi])/3]))/(2.27065*10^13+2.42203*10^12 R-1.88192*10^14 R^2-1.38661*10^13 R^3+6.94889*10^14 R^4+2.07061*10^13 R^5-1.50448*10^15 R^6+4.04723*10^13 R^7+2.11309*10^15 R^8-2.08736*10^14 R^9-2.00744*10^15 R^10+3.79735*10^14 R^11+1.2985*10^15 R^12-3.95153*10^14 R^13-5.5431*10^14 R^14+2.56059*10^14 R^15+1.39409*10^14 R^16-1.03105*10^14 R^17-1.14135*10^13 R^18+2.4023*10^13 R^19-3.75763*10^12 R^20-2.55967*10^12 R^21+1.07157*10^12 R^22-1.29768*10^10 R^23-7.72733*10^10 R^24+1.64917*10^10 R^25+7.25455*10^8 R^26-8.12296*10^8 R^27+1.12858*10^8 R^28+5.14506*10^6 R^29-3.50294*10^6 R^30+411464. R^31-56.7361 R^32-5429.44 R^33+684.762 R^34-40.127 R^35+1. R^36+R (5.44957*10^12+5.57067*10^12 R-3.73477*10^13 R^2-3.75172*10^13 R^3+1.12919*10^14 R^4+1.09276*10^14 R^5-1.99683*10^14 R^6-1.79842*10^14 R^7+2.31945*10^14 R^8+1.83225*10^14 R^9-1.89256*10^14 R^10-1.18794*10^14 R^11+1.13093*10^14 R^12+4.80866*10^13 R^13-5.00486*10^13 R^14-1.08935*10^13 R^15+1.58927*10^13 R^16+6.24809*10^11 R^17-3.36476*10^12 R^18+3.5343*10^11 R^19+4.27401*10^11 R^20-9.9325*10^10 R^21-2.68297*10^10 R^22+1.08649*10^10 R^23+3.78632*10^8 R^24-5.87792*10^8 R^25+4.62274*10^7 R^26+1.50145*10^7 R^27-2.70882*10^6 R^28-78427.4 R^29+55541.2 R^30-3789.68 R^31-300. R^32+55.5556 R^33-2.38095 R^34) Cos[(2 \[Phi])/3]+R Cos[0.666667 \[Phi]] (5.44957*10^12+5.57067*10^12 R-3.73477*10^13 R^2-3.75172*10^13 R^3+1.12919*10^14 R^4+1.09276*10^14 R^5-1.99683*10^14 R^6-1.79842*10^14 R^7+2.31945*10^14 R^8+1.83225*10^14 R^9-1.89256*10^14 R^10-1.18794*10^14 R^11+1.13093*10^14 R^12+4.80866*10^13 R^13-5.00486*10^13 R^14-1.08935*10^13 R^15+1.58927*10^13 R^16+6.24809*10^11 R^17-3.36476*10^12 R^18+3.5343*10^11 R^19+4.27401*10^11 R^20-9.9325*10^10 R^21-2.68297*10^10 R^22+1.08649*10^10 R^23+3.78632*10^8 R^24-5.87792*10^8 R^25+4.62274*10^7 R^26+1.50145*10^7 R^27-2.70882*10^6 R^28-78427.4 R^29+55541.2 R^30-3789.68 R^31-300. R^32+55.5556 R^33-2.38095 R^34+R (7.26609*10^11+3.87525*10^11 R-5.37691*10^12 R^2-2.99363*10^12 R^3+1.74631*10^13 R^4+1.0059*10^13 R^5-3.26414*10^13 R^6-1.92555*10^13 R^7+3.87181*10^13 R^8+2.30868*10^13 R^9-3.03595*10^13 R^10-1.79494*10^13 R^11+1.59681*10^13 R^12+9.06985*10^12 R^13-5.65667*10^12 R^14-2.92194*10^12 R^15+1.36118*10^12 R^16+5.84388*10^11 R^17-2.26267*10^11 R^18-7.25588*10^10 R^19+2.55489*10^10 R^20+5.74381*10^9 R^21-1.94301*10^9 R^22-2.95511*10^8 R^23+9.91184*10^7 R^24+9.85882*10^6 R^25-3.34248*10^6 R^26-206008. R^27+71528.8 R^28+2452.38 R^29-880.952 R^30-12.6984 R^31+4.7619 R^32) Cos[(2 \[Phi])/3]))
First, I have to do the integration from Phi = 0 to 2 pi by numerical integration. Then, plot the answer after integration concerning R from 0 to 1. My code is as follows
R2T0[R_?NumericQ] := 1/(2 \[Pi]) NIntegrate[Evaluate[R2T], {\[Phi], 0, 2 \[Pi]}]
Plot[R2T0[R], {R, 0, 1}].
I am getting the following plot.

As you can see, up to R = 0.6, the plot is smooth, after that, it is oscillating, which is not expected. The plot should be continous after R=0.6, so what is the problem. Please, someone, look into this.
Plot3D[R2T, {R, 0, 1}, {\[Phi], 0, 2 Pi}, PlotRange -> 2000, PlotPoints -> 100]andPlot[R2T /. R -> .7, {\[Phi], 0, 2 Pi}, PlotRange -> 100, PlotPoints -> 100]to see, Integration over phi runs into singularities, in some cases even two. You have to use, Method -> "PrincipalValue", Exclusions -> ...where the difficulty is to calculate exclusions, where Denominator[Together@R2T] ==0. – Akku14 May 21 '22 at 18:59