I'm trying to solve a system of 3 coupled PDEs where I know the values of all three functions at t = 0.
sol = Flatten[NDSolve[{
\!\(
\*SubscriptBox[\(\[PartialD]\), \(t\)]\(sz[t, z]\)\) == \!\(
\*SubscriptBox[\(\[PartialD]\), \(z, z\)]\(sz[t, z]\)\) + n[t, z] +
sy[t, z] - sz[t, z], \!\(
\*SubscriptBox[\(\[PartialD]\), \(t\)]\(sy[t, z]\)\) == \!\(
\*SubscriptBox[\(\[PartialD]\), \(z, z\)]\(sy[t, z]\)\) -
sz[t, z], \!\(
\*SubscriptBox[\(\[PartialD]\), \(t\)]\(n[t, z]\)\) == \!\(
\*SubscriptBox[\(\[PartialD]\), \(z, z\)]\(n[t, z]\)\) + sz[t, z] -
sy[t, z] ,
sz[0, z] == DiracDelta[z], sy[0, z] == 0,
n[0, z] == 0}
, {sz[t], sy[t], n[t]}, {t, 0, 100}, {z, -100, 100}]]
I get nothing out but this error:
NDSolve::ndnum: Encountered non-numerical value for a derivative at t == 0.
I have successfully solved the equations using FTCS in python so I'm not sure what else I need to supply to Mathematica for them to be solved.
Exp[-x^2/(4 h)]/(2 Sqrt[Pi h])for a sufficiently small value ofh. – J. M.'s missing motivation Jun 11 '22 at 18:57