I am trying to solve the logarithmic 2D Nonlinear GPE Equation from this paper https://arxiv.org/pdf/1801.10274.pdf. But failed to get the ground state solution and vortices. I tried to solve in cartesian coordinate. Here is a brief description of the problem and the results I am trying to get.
Here is my code
boundary = 40; xl = yl = -boundary; xr =
yr = boundary;
finalt = 2;
seedwave[x_, y_] := Exp[-0.005 (x^2 + y^2) + I*svalue];
pnumber =
NIntegrate[
Exp[-0.005 (x^2 +
y^2)], {x, -\[Infinity], \[Infinity]}, {y, -\[Infinity], \
\[Infinity]}];(*particle number check*)
svalue = 0; lvalue = 0;
sol = NDSolveValue[{D[[Psi][x, y, t],
t] == -0.5 Laplacian[[Psi][x, y, t], {x, y}] +
Abs[[Psi][x, y, t]]^2 [Psi][x, y, t] Log[
Abs[[Psi][x, y, t]]^2] -
I0.25valueAbs[[Psi][x, y, t]]^4 [Psi][x, y, t],
[Psi][xl, y, t] == [Psi][xr, y, t] == 0,
[Psi][x, yl, t] == [Psi][x, yr, t] == 0,
[Psi][x, y, 0] == seedwave[x, y]},
[Psi][x, y, t], {x, xl, xr}, {y, yl, yr}, {t, 0, finalt},
Method -> {"MethodOfLines",
"SpatialDiscretization" -> {"TensorProductGrid",
"MinPoints" -> 400, "MaxPoints" -> 800,
"DifferenceOrder" -> 4}}, MaxSteps -> 10^6];
Plot3D[Abs[sol[x, y, 1]], {x, xl, xr}, {y, yl, yr}]
Table[DensityPlot[Abs[sol], {x, xl, xr}, {y, yl, yr},
PlotRange -> All, PlotPoints -> 200,
ColorFunction -> "BlueGreenYellow", Frame -> True,
FrameTicks -> Automatic, PlotPoints -> 200, ImageSize -> 350,
LabelStyle -> {24, Bold, Large, Black},
FrameLabel -> {{Style["y", FontFamily -> "Times New Roman",
FontSlant -> "Italic", FontWeight -> Bold, FontSize -> 30],
None}, {Style["x", FontFamily -> "Times New Roman",
FontSlant -> "Italic", FontWeight -> Bold, FontSize -> 30],
Row[{Style["t=", FontFamily -> "Times New Roman",
FontSlant -> "Italic", FontWeight -> Bold, FontSize -> 30],
t}]}}], {t, 0, finalt,
0.5finalt}]
\



Arg. Could you send me CV on https://www.docsie.io/ ? – Alex Trounev Aug 04 '22 at 07:00