In the plot below I'm only using exact numbers, yet I get warnings about precision being lost, is there another setting I'm missing to get an accurate plot?
ClearAll["Global`*"];
nmax = 200;
x[t_] := Sin[(n + 1) t]^(n + 1)/(Sin[t] Sin[n t]^n);
y[t_] := (Sin[t]^2 Sin[n t]^(n - 1))/(\[Pi] Sin[(n + 1) t]^n) x[t];
scale[a_] :=
aPi/(n + 1); ( horizontal scaling, since t in 0..Pi/(n+1) )
xlim = (1 + 1/n)^
n (1 + n); ( vertical scaling, Assuming[{n>1},Limit[x[t],t->0]] *)
xScaled[t_] := x[scale[t]]/xlim;
yScaled[t_] := y[scale[t]]*xlim;
parametric0 =
Block[{n = nmax},
ParametricPlot @@ {{xScaled[t], yScaled[t]}, {t, 0, 90/100},
AspectRatio -> 1,
PlotLabel -> "Eigenvalue density for product of random matrices",
PlotStyle -> {Bold}, WorkingPrecision -> 30,
PlotLegends -> {"n=100"}}]
// Quietto the end ofParametricPlot. That gets rid of the message (what you have in the title). But it doesn't mean the one should ignore the message. Or change{t, 0, 90/100}to{t, 1/100, 90/100}. – JimB Aug 05 '23 at 05:39