0

In the plot below I'm only using exact numbers, yet I get warnings about precision being lost, is there another setting I'm missing to get an accurate plot?

ClearAll["Global`*"];
nmax = 200;
x[t_] := Sin[(n + 1) t]^(n + 1)/(Sin[t] Sin[n t]^n);
y[t_] := (Sin[t]^2 Sin[n t]^(n - 1))/(\[Pi] Sin[(n + 1) t]^n) x[t];

scale[a_] := aPi/(n + 1); ( horizontal scaling, since t in 0..Pi/(n+1) ) xlim = (1 + 1/n)^ n (1 + n); ( vertical scaling, Assuming[{n>1},Limit[x[t],t->0]] *)

xScaled[t_] := x[scale[t]]/xlim; yScaled[t_] := y[scale[t]]*xlim;

parametric0 = Block[{n = nmax}, ParametricPlot @@ {{xScaled[t], yScaled[t]}, {t, 0, 90/100}, AspectRatio -> 1, PlotLabel -> "Eigenvalue density for product of random matrices", PlotStyle -> {Bold}, WorkingPrecision -> 30, PlotLegends -> {"n=100"}}]

Yaroslav Bulatov
  • 7,793
  • 1
  • 19
  • 44
  • 4
    Add // Quiet to the end of ParametricPlot. That gets rid of the message (what you have in the title). But it doesn't mean the one should ignore the message. Or change {t, 0, 90/100} to{t, 1/100, 90/100}. – JimB Aug 05 '23 at 05:39
  • @YaroslavBulatov: Did you pay your attention to my answer to the question of you? – user64494 Aug 22 '23 at 03:52

0 Answers0