Motivated by this post and this paper is an attempt to implement this simple relation in Mathematica to diagonalize a $(2,2)$ matrix. However, the result is not diagonal after iterating discretized version 100k times, can anyone see the correct way to implement this?
brockett =
Compile[{{X0, _Real, 2}, {A, _Real,
2}, {lr, _Real}, {iters, _Integer}},
Module[{i, comm, X}, X = X0;
For[i = 1, i <= iters, i += 1, comm = X . A - A . X;
X += lr (X . comm - comm . X);];
X]];
X0 = {{3, 1}, {1, 2}} // N;
A = {{5, 2}, {2, 7}} // N;
{"A", A // MatrixForm}
{"X0", X0 // MatrixForm}
{"Xt", brockett[X0, A, .0001, 100000] // MatrixForm}

A = N@{{5, 0}, {0 7}}(for example). Also, for nomenclature, clearly one should havebrockettBracket[m1_, m2_] := m1 . (m1 . m2 - m2 . m1) - (m1 . m2 - m2 . m1) . m1(One should always have handy a pocket-packet of brockettBrackets) – Daniel Lichtblau Feb 27 '24 at 17:01