I find the integral
Integrate[Sqrt[2 x - x^2] + x^3 Log[(9 - x^2)/(9 + x^2)], {x, 0, 2}]
and got
1/2 (-36 + π + 65 ArcTanh[4/9])
How can I write this answer has the form $\dfrac{65}{4} \ln \dfrac{13}{5} + \dfrac{\pi}{2}-18$
I find the integral
Integrate[Sqrt[2 x - x^2] + x^3 Log[(9 - x^2)/(9 + x^2)], {x, 0, 2}]
and got
1/2 (-36 + π + 65 ArcTanh[4/9])
How can I write this answer has the form $\dfrac{65}{4} \ln \dfrac{13}{5} + \dfrac{\pi}{2}-18$
expr = 1/2 (-36 + \[Pi] + 65 ArcTanh[4/9]) // TrigToExp
(* -18 + \[Pi]/2 + 65/4 Log[13/9] + 65/4 Log[9/5] *)
MapAt[HoldForm, expr, {{1}, {2}}] // Simplify // ReleaseHold
(* -18 + \[Pi]/2 + 65/4 Log[13/5] *)