2

I find the integral

Integrate[Sqrt[2 x - x^2] + x^3 Log[(9 - x^2)/(9 + x^2)], {x, 0, 2}]

and got

1/2 (-36 + π + 65 ArcTanh[4/9])

How can I write this answer has the form $\dfrac{65}{4} \ln \dfrac{13}{5} + \dfrac{\pi}{2}-18$

LCarvalho
  • 9,233
  • 4
  • 40
  • 96
minthao_2011
  • 4,503
  • 3
  • 31
  • 46

2 Answers2

6
expr = 1/2 (-36 + \[Pi] + 65 ArcTanh[4/9]) // TrigToExp

(*   -18 + \[Pi]/2 + 65/4 Log[13/9] + 65/4 Log[9/5]   *)


MapAt[HoldForm, expr, {{1}, {2}}] // Simplify // ReleaseHold

(*   -18 + \[Pi]/2 + 65/4 Log[13/5]   *)
Alexei Boulbitch
  • 39,397
  • 2
  • 47
  • 96
5

A little more general approach:

expr = 1/2 (-36 + \[Pi] + 65 ArcTanh[4/9])

expr /. x : ArcTanh[_] :> Simplify[TrigToExp[x]]
1/2 (-36 + \[Pi] + 65/2 Log[13/5])

About simplifying expressions with Log take a look here too.

Kuba
  • 136,707
  • 13
  • 279
  • 740