d = {232, 318, 467, 285, 670, 530};
c = {"BAL", "NYC", "LAS", "AUS"};
Assuming that the n(n-1)/2 elements in the distance list d
correspond to the upper triangular part of the distance matrix for
the given ordering of the cities, let
sA = SparseArray[Thread[Subsets[Range[Length@c], {2}] -> d], {Length@c, Length@c}];
sA // Normal // TableForm[#, TableHeadings -> {c, c}] &

To get the full matrix just add sA and its transpose:
sA + sA\[Transpose] // Normal // TableForm[#, TableHeadings -> {c, c}] &

Using WeightedAdjacencyGraph with coordinates based on multi-dimensional scaling:
I use a modification of the code from this Demonstration to get the vertex coordinates that respect the distances in our distance matrix:
ClearAll[mDS];
mDS[dm_] := Module[{dims = Dimensions[dm], em = - dm dm/2, ctr,
vsdvF = #[[1]].Sqrt[#[[2]]].Transpose[#[[1]]] &},
ctr = IdentityMatrix[dims[[1]]] - ConstantArray[1/dims[[1]], dims];
N@Transpose[vsdvF@SingularValueDecomposition[ctr.em.ctr]][[All, ;; 2]]];
dm = sA + sA\[Transpose];
vcoords = mDS[dm];
scldcoords = Transpose[Rescale /@ Transpose@vcoords];
dm = (Normal[dm]) /. (0) -> Infinity;
options = {VertexShapeFunction -> "Square", VertexSize -> {16, 8},
VertexLabels -> Placed["Name", Center],
VertexStyle -> Hue[0.1, 0.5, 1.], AspectRatio->1,
VertexLabelStyle -> Directive[FontFamily -> "Arial", 16],
ImageSize -> 380, ImagePadding -> 20, DirectedEdges -> True,
EdgeStyle -> Directive[Thick, Blue, Arrowheads[{{.05, .75}}]]};
WeightedAdjacencyGraph[c, dm, options, VertexCoordinates -> scldcoords]

... and using actual coordinates from CityData:
cities = {{"Baltimore", "Maryland", "UnitedStates"},
{"NewYork", "NewYork", "UnitedStates"},
{"LasVegas", "Nevada", "UnitedStates"},
{"Austin", "Texas", "UnitedStates"}};
vcoords2 = Reverse@CityData[#, "Coordinates"] & /@ cities;
scldcoords2 = Transpose[Rescale /@ Transpose@vcoords2];
WeightedAdjacencyGraph[c, dm, options, VertexCoordinates -> scldcoords2]

i.e. if you're looking literally at the bird's eye distance between cities, you could store the latitude/longitude of the cities and use a function to calculate the distances from there and fill in the table.
– Myridium May 31 '14 at 14:33