I want to obtain the complex roots of some equations that are similar,but each of them has a different condition. this difference is the value of α in these equations. When I try to obtain the complex roots, just the real part is close to correct value, but the imaginary part is identical for all of the equations, and an error message was returned every time. What is the reason for this?
The coding has many special characters and fancy formatting, making it hard to post my code here, so I have posted images. The images show the main equation with α = .1 and the results for α = .1 α = .2 and α = .3, respectively, and the error message I got.
Here are the images:

And here is the code:
Subscript[j, ν, 1][s_] = s*(SphericalBesselJ[0, s]) - 1*(SphericalBesselJ[1, s])
Subscript[j, 1][s_] = SphericalBesselJ[1, s]
Subscript[n, ν, 1][s_] = s*(SphericalBesselY[0, s]) - 1*(BesselY[1, s])
Subscript[n, 1][s_] = SphericalBesselY[1, s]
Subscript[h, 1][s_] = SphericalBesselJ[1, s] + I*(SphericalBesselY[1, s])
Subscript[h, ν, 1][s_] =
s*(SphericalBesselJ[0, s] + I*(SphericalBesselY[0, s])) -
1*(SphericalBesselJ[1, s] + I*(SphericalBesselY[1, s]))
α = .1
β = .95
Subscript[u, B][w_] =
.10114688*Sqrt[5.59` + 0.031098192`/((3.30216`- 0.000049206` I) - w)]
Subscript[u, C][w_] = .10114688* w Sqrt[3.7` - 81/((0. + 0.01728` I) w + w^2)]
Subscript[u, A][w_] = .10114688*Sqrt[1.777]*w
Subscript[u, D][w_] = .10114688*w
FindRoot[Det[{
{Subscript[j, 1][α Subscript[u, D][w]], -Subscript[j, 1][α Subscript[u, C][w]],
-Subscript[n, 1][α Subscript[u, C][w]], 0, 0, 0},
{((Subscript[u, C][w])^2)*Subscript[j, ν, 1][α Subscript[u, D][w]],
-((Subscript[u, D][w])^2)*Subscript[j, ν, 1][α Subscript[u, C][w]],
-((Subscript[u, D][w])^2)*Subscript[n, ν, 1][α Subscript[u, C][w]],
0, 0, 0},
{0, Subscript[j, 1][β Subscript[u, C][w]], Subscript[n, 1][β Subscript[u, C][w]],
-Subscript[j, 1][β Subscript[u, B][w]], -Subscript[n, 1][β Subscript[u, B][w]], 0},
{0, ((Subscript[u, B][w])^2)*Subscript[j, ν, 1][β Subscript[u, C][w]],
((Subscript[u, B][w])^2)*Subscript[n, ν, 1][β Subscript[u, C][w]],
-((Subscript[u, C][w])^2)*Subscript[j, ν, 1][β Subscript[u, B][w]],
-((Subscript[u, C][w])^2)*Subscript[n, ν, 1][β Subscript[u, B][w]], 0},
{0, 0, 0, Subscript[j, 1][Subscript[u, B][w]],
Subscript[n, 1][Subscript[u, B][w]], -Subscript[h, 1][Subscript[u, A][w]]},
{0, 0, 0, ((Subscript[u, A][w])^2)*Subscript[j, ν, 1][Subscript[u, B][w]],
((Subscript[u, A][w])^2)*Subscript[n, ν, 1][Subscript[u, B][w]],
-((Subscript[u, B][w])^2)*Subscript[h, ν, 1][Subscript[u, A][w]]}
}] == 0, {w, 4.6}]

RootIntervals, e.g. see this answer First positive root, it works also for complex variables. This answer might be helpful as well. – Artes Jun 20 '14 at 15:38