I wanted to find the normalization of distribution F2 .
p = 2.2849;
p1 = 0.938/3;
p2 = 0.938/3;
p3 = 1.6;
F2 = Integrate[(s - s0)*(s + 2^2)^-2/(p^2 - s)^2, {s, s0, Infinity}]/. s0 -> (p1^2/(1 - x2 - x3) + p2^2/x2 + p3^2/x3)
nfactor = NIntegrate[F2, {x2, 0, 1}, {x3, 0, 1}];
why is Mathematica producing complex result? while the result have to be real
Integrateproduces aConditionalExpressionwhich fails for parts of the rectangle{x2, 0, 1}, {x3, 0, 1}. This meansNIntegratereturns unevaluated. Did youF2correctly? – Greg Hurst Jun 24 '14 at 18:490<x2<1and0<x3<1. – Daniel Lichtblau Jun 24 '14 at 19:50F2 = Integrate[(s - s0)*(s + 2^2)^-2/(s - p^2)^2, {s, s0, Infinity}, Assumptions -> {s0 [Element] Reals, s0 > 5.22077}] /. s0 -> (p1^2/(1 - x2 - x3) + p2^2/x2 + p3^2/x3)
In[6]:= nfactor = NIntegrate[F2, {x2, 0, 1}, {x3, 0, 1}, MaxRecursion -> 20, Method -> {GlobalAdaptive, MaxErrorIncreases -> 10000}]
Out[6]= -0.00145373 - 0.00874148 I
– asal Jun 24 '14 at 21:06