a[x_, y_] := (x^2 - 3 - 9*y)^2 + 50*y^2
Plot3D with MeshFunctions
Using a single Plot3D with multiple MeshFunctions:
Plot3D[a[x, y], {x, -13, 13}, {y, -.001, 12.1},
PlotStyle -> Opacity[.5], BoundaryStyle -> None, Boxed -> False, BoxRatios -> 1,
MeshFunctions -> {#2 &,
ConditionalExpression[Derivative[1, 0][a][#, #2], Derivative[2, 0][a][#, #2] > 0] &},
Mesh -> {{0, 2, 4, 6, 8, 10, 12}, {0}},
MeshStyle -> Dynamic@{Directive[{Thick, Hue[RandomReal[]]}],
{Directive[{Gray, Thick}], Directive[{Gray, Thick}]}} ]

Plot3D with Exclusions:
Plot3D[a[x, y], {x, -13, 13}, {y, -.001, 12.1}, Boxed -> False, BoxRatios -> 1,
Exclusions -> {ConditionalExpression[Derivative[1, 0][a][x, y],
Derivative[2, 0][a][x, y] > 0]},
ExclusionsStyle -> Red, ColorFunction -> Hue,
PlotStyle -> Opacity[.5], BoundaryStyle -> None,
MeshFunctions -> {#2 &}, Mesh -> {{0, 2, 4, 6, 8, 10, 12}},
MeshStyle -> {Directive[{Thick, Hue[RandomReal[]]}]} ]

ParametricPlot3D
soln = y /. Assuming[{x > -1/3},
FullSimplify[Solve[{ConditionalExpression[Derivative[1, 0][a][y, x],
Derivative[2, 0][a][y, x] > 0] == 0, x > -1/3}, y]]];
$\left\{-\sqrt{9 x+3},\sqrt{9 x+3}\right\}$
b[x_] := {#, x, a[#, x]} & /@ soln
{ $\left\{-\sqrt{9 x+3},x,50 x^2\right\}$, $ \left\{\sqrt{9 x+3},x,50 x^2\right\} $}
ParametricPlot3D[{b[x], {x, #, a[x, #]} & /@ {0, 2, 4, 6, 8, 10, 12}},
{x, -13, 13}, PlotStyle -> {Thickness[.01], Thick},
ColorFunction -> Hue, Boxed -> False, BoxRatios -> 1]
