The current code is :
ParametricPlot[{
{Cos[t] + 1/2, Sin[t]}*10,
5 {Cos[t/2], Sin[t/2]},
5 {Cos[t/2 + Pi] + 2, Sin[Pi + t/2]},
If[r < 1.1, r {Cos[t] + 10/r, Sin[t]}],
If[r > .9 && r < 2.1, (r - 1) {Cos[t], Sin[t]}]
},
{t, -0.1, 2 Pi + 0.1}, {r, 0, 5}, MeshFunctions -> {#4 &},
Mesh -> {{0, 1, 5}}, MeshShading -> {Red, Blue}, PlotRange -> All,
Frame -> {False, False}, Axes -> None, PlotStyle -> {Red, Red, Red}]
and its output:

How to fill the close areas with blue neighbored by red?
Update 1 : I want to see whether it is possible to create such figure by using ParametricPlot and the region filling options.
Update 2
Desired result should be similar to:
Obtained by:
Graphics[{Red, Disk[], Blue,
Polygon[Join[Table[{Cos[a], Sin[a]}, {a, Pi, 2 Pi, Pi/360}],
Table[{-1/2, 0} + {Cos[a], Sin[a]} /2, {a, 0, Pi, Pi/360}],
Table[{1/2, 0} + {Cos[a], Sin[a]} /2, {a, Pi, 2 Pi, Pi/360}]]],
Blue, Disk[{+1/2, 0}, 1/8], Red, Disk[{-1/2, 0}, 1/8]},
ImageSize -> Large]
Another similar but undesired implementation is:
Plot[{Sqrt[1 - x^2], -Sqrt[1 - x^2], Sqrt[x - x^2], -Sqrt[-x - x^2],
Sqrt[0.025 - (x - 0.5)^2], -Sqrt[0.025 - (x - 0.5)^2],
Sqrt[0.025 - (x + 0.5)^2], -Sqrt[0.025 - (x + 0.5)^2]}, {x, -1, 1},
Filling -> {1 -> {Axis, Red}, 2 -> {{4}, Blue}, 2 -> {Axis, Blue},
3 -> {Axis, Blue}, 4 -> {Axis, Red}, 5 -> {{6}, Red},
7 -> {{8}, Blue}}, AspectRatio -> Automatic, Axes -> False,
PlotStyle -> None,
ImageSize -> Large]
which gives:

Update 3
Inspired by ubpdqn's answer below, I tried the following code:
ParametricPlot[{u {-Sin[t], Cos[t]}, u {Sin[t], Cos[t]}}, {t, 0,
Pi}, {u, 0, 1},
MeshFunctions -> {(Boole[(
If[#1 <= 0,
#2 - Sqrt[0.25 - (#1 + 0.5)^2] >= 0 || (#1 + .5)^2 + #2^2 <
1/64,
#2 + Sqrt[0.25 - (#1 - 0.5)^2] >= 0 && (#1 - .5)^2 + #2^2 >
1/64]
)] &)}, Mesh -> {{0.1}}, MeshShading -> {Blue, Red},
PlotPoints -> 70,
Frame -> False, Axes -> False, BoundaryStyle -> None,
ImageSize -> Large]
which gives:

and should be the right answer.


