2
With[{f = # + 1/# &, center = 1/3 + 3 I/2, radius = 4/3},ParametricPlot[Through[{Re,       Im}[f[center + r Exp[I \[Theta]]]]], {r, 0, radius}, {\[Theta], -\[Pi], \[Pi]}, PlotPoints -> 30, PlotRange -> All, MaxRecursion -> 3]]

in Version 9,the output is:

enter image description here

but in Version 10:

enter image description here

Is it a bug in Version 10?

the code links here.

partida
  • 6,816
  • 22
  • 48

2 Answers2

5

Use PlotTheme -> "Classic" to get V 9 output:

Mathematica graphics

With[
 {f = # + 1/# &, center = 1/3 + 3 I/2, radius = 4/3},
 ParametricPlot[Through[{Re, Im}[f[center + r Exp[I \[Theta]]]]], {r, 0, radius}, 
  {\[Theta], -\[Pi], \[Pi]}, PlotPoints -> 30, 
  PlotRange -> All, MaxRecursion -> 3, PlotTheme -> "Classic"]
 ]

Mathematica graphics

I am not sure why, might be a bug

Nasser
  • 143,286
  • 11
  • 154
  • 359
3

On 10.0 for Mac OS X x86 (64-bit) (September 10, 2014) one uses:

With[{f = # + 1/# &, center = 1/3 + 3 I/2, radius = 4/3}, 
 ParametricPlot[
  Through[{Re, Im}[f[center + r Exp[I \[Theta]]]]], {r, 0, 
   radius}, {\[Theta], -\[Pi], \[Pi]}, PlotPoints -> 55, 
  PlotRange -> All, Mesh -> Full]]

enter image description here

So, Mesh seems to do the trick.

  • 2
    Mesh -> Automatic allows to reproduce the output of version 9 exactly (only colors are different). It is despite the fact that by default Options[ParametricPlot, Mesh] returns {Mesh -> Automatic}. – Alexey Popkov Nov 28 '14 at 13:56