10

Bug introduced in 9.0.1 or earlier and fixed in 10.1.0


In version 10.0:

Integrate[1/(a^2 + b^2 - 2 a b Cos[t]), {t, 0, 2 Pi},  Assumptions -> {a > b > 0}]
(* (2 Pi)/(a^2 - b^2) *)
Integrate[1/(a^2 + b^2 - 2 a b Cos[t + t0]), {t, 0, 2 Pi},  Assumptions -> {a > b > 0}]
(* 0 *)

However, a phase shifting on t should not affect the integral.

njpipeorgan
  • 1,166
  • 6
  • 13

1 Answers1

3

This appears to be fixed in 10.1.0:

Integrate[1/(a^2 + b^2 - 2 a b Cos[t]), {t, 0, 2 Pi}, 
 Assumptions -> {a > b > 0}]
(* (2 π)/(a^2 - b^2) *)

Integrate[1/(a^2 + b^2 - 2 a b Cos[t + t0]), {t, 0, 2 Pi}, 
 Assumptions -> {a > b > 0}]
(* ConditionalExpression[(2 π)/(a^2 - b^2), -3 π <= Re[t0] <= -π && Im[t0] == 0] *)
Szabolcs
  • 234,956
  • 30
  • 623
  • 1,263