6

I want to see the Taylor series representation for arbitrary functions, e.g. $\sin$. With the Series[] command, I can only see the first $n$ terms. Is there the possibility to show the infinite sum representation?

Thanks for the help!

J. M.'s missing motivation
  • 124,525
  • 11
  • 401
  • 574
McLawrence
  • 217
  • 1
  • 7

2 Answers2

9

Borrowing from Chip Hurst:

f = Inactive[Sum][
  Assuming[n > 0, SeriesCoefficient[Sin[x], {x, 0, n}]] x^n, {n, 
   0, Infinity}]

enter image description here

ExpToTrig[Activate[f]] // Simplify

(*Sin[x]*)
Basheer Algohi
  • 19,917
  • 1
  • 31
  • 78
7

Try this

FullSimplify[SeriesCoefficient[Sin[x], {x, 0, n}], n >= 0 && n ∈ Integers]
((-1)^(1 + n) Sin[n π/2])/n!
Greg Hurst
  • 35,921
  • 1
  • 90
  • 136
  • Bit then I am expressing Sin with another Sin. For Sin(x) I know the Row. I am trying to get some result like: Sum[((-1)^k*x^(2*k + 1))/(2*k + 1)!, {k, 0, Infinity}] . – McLawrence May 15 '15 at 20:15
  • 1
    @McLawrence Yes you can post code in comments as well: enclose it in single backticks like this: ` ` – MarcoB May 15 '15 at 20:18