I have a matrix of the form:
$$\left(
\begin{array}{ccc}
1 & \frac{\delta I_1(\kappa )}{I_0(\kappa )} & 0 \\
\frac{I_1(\kappa ) \delta ^*}{I_0(\kappa )} & \frac{\delta (I_1(\kappa )+\kappa I_2(\kappa )) \delta ^*}{\kappa I_0(\kappa )} & 0 \\
0 & 0 & \frac{\delta I_1(\kappa ) \delta ^*}{\kappa I_0(\kappa )} \\
\end{array}
\right)$$
That I want to convert to the form:
$$\begin{pmatrix}1&g_c\delta&0\\g_c\delta^*&\frac{(1+g)}{2}|\delta|^2&0\\0&0&\frac{(1-g)}{2}|\delta|^2\end{pmatrix}$$
where $g_c=\frac{I_1(\kappa)}{I_0(\kappa)}$ and $g=\frac{I_2(\kappa)}{I_0(\kappa)}$
For the time being I don't speak about converting $\delta\delta^*$ to $|\delta|^2$. I've asked that question here
But about the other parts, I've used the following code:
Tvol[[1, 2]] /. {BesselI[1, κ]/BesselI[0, κ] -> Subscript[g, c]} // Simplify // TraditionalForm
$$\delta g_c$$
Tvol[[2, 1]] /. {BesselI[1, κ]/BesselI[0, κ] -> Subscript[g, c]} // Simplify // TraditionalForm
$$g_c \delta ^*$$
Tvol[[2, 2]] /. {BesselI[1, κ] -> κ/2 (BesselI[0, κ] - BesselI[2, κ])} // FullSimplify // TraditionalForm
$$\frac{\delta \delta ^* (I_0(\kappa )+I_2(\kappa ))}{2 I_0(\kappa )}$$
Tvol[[2, 2]] /. {BesselI[2, κ] -> g*BesselI[0, κ]} //FullSimplify // TraditionalForm
$$\delta \delta ^* \left(g+\frac{I_1(\kappa )}{\kappa I_0(\kappa )}\right)$$
I wonder why at this step mathematica doesn't simply replace $\frac{I_0(\kappa)}{I_0(\kappa)}=1$ and $\frac{I_2(\kappa)}{I_0(\kappa)}=g$ to reach to the simple form:
$$\delta \delta ^*\frac{ 1+g}{2}$$
and returns back to $I_1(\kappa)$ ?
I have changed the code several times but none of them helped!!!
BesselI[0, k]/BesselI[0, k]returns1– Dr. belisarius Sep 18 '15 at 00:55