SameQ checks to see if symbolic expressions are the same. There are some caveats, as pointed out by the answers to:
Consider the following two expressions:
s = ((ax-bx)^2+(ay-by)^2) Abs[ay bx-ax by-ay px+by px+ax py-bx py] > 0 ||
((ax-bx)^2+(ay-by)^2) ((ax-bx) (bx-px)+(ay-by) (by-py)) > 0 ||
((ax-bx)^2+(ay-by)^2) (ax^2+ay^2+bx px-ax (bx+px)+by py-ay (by+py)) < 0
t = ((ax-bx)^2+(ay-by)^2) Abs[ay bx-ax by-ay px+by px+ax py-bx py] > 0 ||
((ax-bx)^2+(ay-by)^2) (ax^2+ay^2+bx px-ax (bx+px)+by py-ay (by+py)) < 0 ||
((ax-bx)^2+(ay-by)^2) ((ax-bx) (bx-px)+(ay-by) (by-py)) > 0
On Mathematica 9:
In[47]:= s == t
Out[47]= (((ax-bx)^2+(ay-by)^2) Abs[ay bx-ax by-ay px+by px+ax py-bx py] > 0 ||
((ax-bx)^2+(ay-by)^2) ((ax-bx) (bx-px)+(ay-by) (by-py)) > 0 ||
((ax-bx)^2+(ay-by)^2) (ax^2+ay^2+bx px-ax (bx+px)+by py-ay (by+py)) < 0) ==
(((ax-bx)^2+(ay-by)^2) Abs[ay bx-ax by-ay px+by px+ax py-bx py] > 0 ||
((ax-bx)^2+(ay-by)^2) (ax^2+ay^2+bx px-ax (bx+px)+by py-ay (by+py)) < 0 ||
((ax-bx)^2+(ay-by)^2) ((ax-bx) (bx-px)+(ay-by) (by-py)) > 0)
In[48]:= s === t
Out[48]= False
In[49]:= Assuming[{ax, bx, px, ay, by, py} \[Element] Reals, s === t]
Out[49]= False
In[50]:= Assuming[{ax, bx, px, ay, by, py} \[Element] Reals, FullSimplify[s === t]]
Out[50]= False
Can I get Mathematica to identify where it thinks the statements are different?

Sort[t] == Sort[s]– Dr. belisarius Sep 25 '15 at 03:00Sort::normal: Nonatomic expression expected at position 1 in Sort[t]– bzm3r Sep 25 '15 at 03:18SameQand notEqual?SameQtests for structural equality of two data structures, and has nothing to do with mathematics.Assuming,Simplify, etc. have absolutely no effect on it because those functions are for symbolic mathematics.SameQis purely for programming. If two things don't look exactly the same according toFullForm, then they are different forSameQ. – Szabolcs Sep 25 '15 at 07:21