1

I used Maximize for the maximum value of $3 x^2+2 \sqrt{2} x y$ when $x^4+y^4=1$ , $x>0,y>0$.

  1. What methods does Maximize of Mathematica use?

  2. Could you show me the processes with the Lagrange multiplier?

Maximize[{3 x^2 + 2 Sqrt[2] x y, x^4 + y^4 == 1}, {x, y}]

{2 Sqrt[5], {x -> Root[-4 + 5 #1^4 &, 1], y -> (2 Sqrt[5] - 3 Root[-4 + 5 #1^4 &, 1]^2)/ (2 Sqrt[2] Root[-4 + 5 #1^4 &, 1]) }}

J. M.'s missing motivation
  • 124,525
  • 11
  • 401
  • 574
Junho Lee
  • 5,155
  • 1
  • 15
  • 33

1 Answers1

4

To your 2. question (shortly):

f = 3 x^2 + 2 Sqrt[2] x y;
g = x^4 + y^4 - 1;
L = f + λ g;

points = NSolve[{Grad[L, {x, y}] == 0, g == 0, x > 0, y > 0}, {x,y, λ}, Reals]
{{x -> 0.945742, y -> 0.66874, λ -> -2.23607}}

f /. points
{4.47214}

with NMaximize

NMaximize[{3 x^2 + 2 Sqrt[2] x y, x^4 + y^4 == 1}, {x, y}]
{4.47214, {x -> 0.945742, y -> 0.66874}}
LCarvalho
  • 9,233
  • 4
  • 40
  • 96