Maybe you'd be interested in a log-log plot ?
The output
Brute plot

Restricted y domain
With \addplot+[mark=none,const plot,restrict y to domain=0:42] {x!};
Are displayed, only those values between exp(0)=1 and exp(42)~10^17.
I think this is enough to bring the point home about the relative growths.
Actually : setting ymax is better.

The code
Brute plot
\documentclass[12pt,tikz,border=0pt]{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.14}
\begin{document}
\begin{tikzpicture}
\begin{loglogaxis}
[
%domain=2:30,
ymin=1,
axis lines = center,
samples at ={1,2,...,100},
grid=both,
legend entries={$y=x!$,$y=x^2$,$y=\sqrt{x}$},
every axis legend/.append style=
{
at={(current axis.above origin)},
anchor=north west, xshift=1cm, yshift=-1mm,
draw=none,
cells={anchor=west},
%font=\scriptsize,
}
]
\addplot+[mark=none,const plot] {x!};
\addplot+[mark=none] {x^2};
\addplot+[mark=none] {sqrt(x)};
\end{loglogaxis}
\end{tikzpicture}
\end{document}
Restricted domain
\documentclass[12pt,tikz,border=0pt]{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.14}
\begin{document}
\begin{tikzpicture}
\begin{loglogaxis}
[
height=13cm,
ymin=1,
ymax=exp(40),
hide obscured x ticks=false,
hide obscured y ticks=false,
axis lines = center,
samples at ={1,2,...,100},
grid=both,
legend entries={$y=x!$,$y=\exp(x)$,$y=x^2$,$y=\sqrt{x}$,$y=\ln(x)$},
every axis legend/.append style=
{
at={(current axis.above origin)},
anchor=north west, xshift=3mm, yshift=-1mm,
draw=none,
cells={anchor=west},
%font=\scriptsize,
},
]
\addplot+[mark=none,const plot,] {x!};
\addplot+[mark=none] {exp(x)};
\addplot+[mark=none] {x^2};
\addplot+[mark=none] {sqrt(x)};
\addplot+[mark=none] {ln(x)};
\end{loglogaxis}
\end{tikzpicture}
\end{document}
\sqrt(x)=x^(1/2). – ebosi Jun 21 '17 at 15:27\in\sqrtis the problem, which is not needed. So simply writingsqrt(x)is sufficient. But this only solved one problem ... – Stefan Pinnow Jun 21 '17 at 15:2810!results in a number of the magnitude of10^6which is much bigger than the next smaller number of10^2 = 100and thus you will get an "dimension too large" error. And even if it would be plotted, you won't see the100compared to the10^6. So I suggest to simply reduce the domain of the faculty to 6 or 7. – Stefan Pinnow Jun 21 '17 at 15:31