The following code shows a solution without the use of external applications.
Binomial distribution
I now have included PGF's own fpu library. Hopefully its setup is correct.
Even n > 8 will compile now (before: ! Dimension too large., this was due to the calculation of the binomial coefficient.)
Packages used:
geometry for changing the paper layout,
booktabs for nice layout of tables (\top-, \mid- and \toprule)
pgf for the calculations,
fpu library,
pgf/number format,
pgffor for the \foreach loops, and
etoolbox for the simple composing of the table contents.
amsmath's \binom and \frac should be used instead of \choose and \over!
How to use.
There exists one user macro: \binomTable[<zero>]{<start n>}{<end n>}.
The optional <zero> argument decides whether zero cells (0.0000) should be typeset at all (0: 0.0000 is typeset, everything else: 0.0000 is not typeset).
[This is hard-coded, any change to the /pgf/number format/precision key will have to be shadowed there manually.]
The second and third argument define the start and the end n, respectively.
Binomial coefficient
For the bionomial coefficient I used the following formula with i = \j

Yes, please.
I don't know how to use pgfplotstable.
Code
\documentclass[landscape]{article}
\usepackage[landscape, margin=.5cm]{geometry}
\usepackage{booktabs}
\usepackage{pgf,pgffor}
\usepackage{etoolbox}
\usepgflibrary{fpu}
\pgfkeys{/pgf/fpu}
\pgfkeys{/pgf/fpu,/pgf/fpu/output format=fixed}
\pgfkeys{/pgf/number format/.cd,fixed,fixed zerofill,precision=4}
%%% Defining basic stuff
\def\myHeadList{0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 1/3, 0.35, 0.40, 0.45, 0.49, 0.50}
%\def\startN{9}
%\def\endN{10}
\newif\ifsomanyzeroesshouldbeprinted
\newcommand*{\binomTable}[3][0]{% #1 = 0 => results in the form 0.0000 are typeset
% #1 != 0 => results in the form 0.0000 are omitted
% #2 = startN
% #3 = endN
\edef\startN{#2}%
\edef\endN{#3}%
\expandafter\ifnum#1=0\relax%
\somanyzeroesshouldbeprintedtrue%
\else%
\somanyzeroesshouldbeprintedfalse%
\fi%
%
%%% Building head of table
\def\myHead{ $n$ & $k$ & $n\choose k$}%
\foreach \p in \myHeadList {%
\xappto\myHead{& {$\p$}}%
}%
\appto\myHead{\\}%
%
%%% Bulding body of table
\def\myTable{}%
\def\myN{\startN,...,\endN}%
\foreach \n in \myN {%
\foreach \k in {0,...,\n}{%
\ifnum\k=0\relax%
\xappto\myTable{\noexpand\midrule\n}%
\fi%
\xappto\myTable{& \k}%
\pgfmathsetmacro{\binomProduct}{1}%
\xdef\myTempValue{\binomProduct}%
\ifnum\k=0\relax%
\xdef\oldK{\k}%
\else%
\foreach \j in {1,...,\k}{%
\pgfmathsetmacro{\binomProduct}{\myTempValue*(\n+1-\j)/\j}%
\xdef\myTempValue{\binomProduct}%
}%
\fi%
\pgfmathsetmacro{\myTempValue}{round(\myTempValue)}%
\xappto\myTable{& \noexpand\pgfmathprintnumber[/pgf/number format/.cd,fixed,precision=0,set thousands separator={\,},min exponent for 1000 sep=4]{\myTempValue}}%
\foreach \p in \myHeadList {%
\pgfmathsetmacro{\result}{\myTempValue*\p^(\k)*(1-\p)^(\n-\k)}%
\ifsomanyzeroesshouldbeprinted%
\xappto\myTable{& \noexpand\pgfmathprintnumber{\result}}%
\else%
\ifdim\result pt<0.00005pt\relax%
\gappto\myTable{&}%
\else%
\xappto\myTable{& \noexpand\pgfmathprintnumber{\result}}%
\fi%
\fi%
}%
\gappto\myTable{\\}%
}%
}%
}
\pagestyle{empty}
\def\formulae{%
\begin{tabular}{@{}l@{}}
$\displaystyle p(\xi=k)={{n}\choose{k}} p^k q^{n-k}$ \\
$\displaystyle {n\choose k}=\prod_{j=1}^k {n+1-j \over j}$
\end{tabular}%
}
\begin{document}
\binomTable[1]{2}{8}
\begin{tabular}{rrr*{13}{r}}
\toprule\myHead\myTable\midrule\myHead\bottomrule
\end{tabular}
\hfill\formulae
\binomTable[1]{9}{11}
\begin{tabular}{rrr*{13}{r}}
\toprule\myHead\myTable\midrule\myHead\bottomrule
\end{tabular}
\hfill\formulae
\binomTable[1]{12}{14}
\begin{tabular}{rrr*{13}{r}}
\toprule\myHead\myTable\midrule\myHead\bottomrule
\end{tabular}
\hfill\formulae
\binomTable[1]{15}{16}
\begin{tabular}{rrr*{13}{r}}
\toprule\myHead\myTable\midrule\myHead\bottomrule
\end{tabular}
\hfill\formulae
\end{document}
Output
These are old images, the current code adds another column where n \choose k is given.

Poisson distribution
Your code looks fine in my eyes.
PGF’s \foreach is known to have precision problems with ... and non-integer values.
My work-around: Use
\foreach \ll in \myLList {%
\pgfmathsetmacro{\l}{.1*\ll}
and then you can create your tables with
\poissonTable[1]{1,...,40}{12}
Interestingly \pgfmathsetmacor{\l}{\ll/10} won’t work.
In my given example below I used {.1*1,.1*...,.1*40} and parsing that to \l. The macro \poissonTable takes 1, .1* and 40 as separated parameters whereas the macro \poissonTableL expects the list itself.
I added an option to space every _5_th row by testing whether \l is divisible by .5. We could just use a row-counter we can check for divisibility, but that would give us an separate last row in the second example (which is like your professor's).
Testing for the last row works out of the box with \poissonTable but needs a little help for \poissonTable.
This solution is very special and probably will need extra care if the rows differ very much from this scheme.
Maybe you want a more explicit sort of giving the rows like in another answer of mine where you could say {.1,.2,.3,.4,[1].5,.6,.7,.8,.9,[1]1,…} so that rows with [<x>] get <x>ex-spacing …?
Code (without output)
\documentclass[landscape]{article}
\usepackage[landscape,margin=.5cm]{geometry}
\usepackage[table]{xcolor}
\usepackage{booktabs}
\usepackage{pgf,pgffor}
\usepackage{etoolbox}
\usepgflibrary{fpu}
\pgfkeys{/pgf/fpu}
\pgfkeys{/pgf/fpu,/pgf/fpu/output format=fixed}
\pgfkeys{/pgf/number format/.cd,fixed,fixed zerofill,precision=4}
\edef\mysecondtest{false}%
\def\mc#1{\multicolumn{1}{c}{#1}}
\newif\ifsomanyzeroesshouldbeprinted
\newcommand*{\poissonTable}[5][0]{% #1 = 0 => results in the form 0.0000 are typeset
% #1 != 0 => results in the form 0.0000 are omitted
% #2 = startN
% #3 = midN
% #4 = endN
% #5 = endK
\edef\startN{#2}\edef\midN{#3}\edef\endN{#4}%
\edef\myLList{\midN\startN,\midN...,\midN\endN}%
\edef\lastN{\midN\endN}%
\poissonTableL[#1]{\myLList}{#5}
}
\newcommand*{\poissonTableL}[3][0]{% #1 = 0 => results in the form 0.0000 are typeset
% #1 != 0 => results in the form 0.0000 are omitted
% #2 = Liste
% #3 = endK
\edef\myLList{#2}
\edef\endK{#3}%
\expandafter\ifnum#1=0\relax%
\somanyzeroesshouldbeprintedtrue%
\else%
\somanyzeroesshouldbeprintedfalse%
\fi%
%%% Building head of table
\def\myLHead{\mc{$\lambda$} }%
\foreach \k in {0,...,\endK} {%
\ifnum\k=0\relax%
\xappto\myLHead{& \noexpand\mc{\llap{$k\to{}$}$\k$}}% or \to replaced by =
\else%
\xappto\myLHead{& \noexpand\mc{\k}}%
\fi
}%
\appto\myLHead{\\}%
%%% Bulding body of table
\def\myLTable{}%
\foreach \ll in \myLList {%
\pgfmathsetmacro{\l}{\ll}%
\xappto\myLTable{ $\l$}%
\foreach \k in {0,...,\endK}{%
\pgfmathsetmacro{\Lresult}{e^(-\l)*((\l)^(\k))/((\k)!)}%
\ifsomanyzeroesshouldbeprinted%
\xappto\myLTable{& \noexpand\pgfmathprintnumber{\Lresult}}%
\else\ifdim\Lresult pt<0.00005pt\relax%
\gappto\myLTable{&}%
\else%
\xappto\myLTable{& \noexpand\pgfmathprintnumber{\Lresult}}%
\fi%
\fi%
}%
\gappto\myLTable{\\}%
\pgfkeys{/pgf/fpu=false}%
\pgfmathsetmacro{\lastRow}{\ll==\lastN?"0":"1"}%
\pgfmathsetmacro{\lastRow}{\mysecondtest?"0":"\lastRow"}%
\pgfmathparse{mod(\l,.5)==0?"[\lastRow ex]":""}%
\xappto\myLTable{\pgfmathresult}%
}%
\edef\mysecondtest{false}%
}
\pagestyle{empty}
\begin{document}
\poissonTable[1]{1}{.1*}{40}{12}
\begin{tabular}{rr*{13}{r}}
\toprule\myLHead\midrule\myLTable\midrule\myLHead\bottomrule
\end{tabular}
\edef\lastN{10}%
\def\mysecondtest{mod(\ll,1)==0}%
\poissonTableL[1]{.1*1,.1*...,.1*20,.1*22,.1*24,.1*...,.1*40,5,6,...,10}{12}
\begin{tabular}{rr*{13}{r}}
\toprule\myLHead\midrule\myLTable\midrule\myLHead\bottomrule
\end{tabular}
\end{document}
pgfmath library this should be doable, but you should compose a fully compilable MWE including\documentclassand the appropriate packages that sets up the problem. And where you want the calculations show the formula you want applied. Or, see for example a similar question: Mathematical functions inside LaTeX tables. – Peter Grill Nov 25 '12 at 21:44\foreachbut for making tables. As I see in your link may bepgfplotstableorspreadtabscould achieve my objetive. The only MWE I can think about is the table I want to make. – Manuel Nov 25 '12 at 21:52