I try to achieve the following: I have two matrices with similar structure, but whose entries differ in length. I want the two matrices to have identical and even spacing. This is what I got so far:
\documentclass{article}
\usepackage{tabstackengine}
\stackMath
\begin{document}
\begin{equation}
\setstackgap{L}{2.1\baselineskip}
\fixTABwidth{T}
\mathbf{A}_T(t) =
\bracketMatrixstack{
0 & 1 & 0 & 0 \\
\frac{\beta x_3^*(t) - k_S}{m_1+m_3} & -\frac{d_S+d_P}{m_S+m_P} & \frac{c_1x_1^*(t) -A_{S2}}{m_S + m_P} & -\frac{A_{S1}}{m_P+m_S} \\
\frac{\hat V \nu_P}{\hat x_S C_{h_\mu}} & \frac{A_{S2}}{C_{h_1}} & -\frac{1}{2} \frac{\gamma A_{or1}}{C_{h_\rho}}{\sqrt{|\zeta_7^*(t) - d_2|}} & 0 \\
0 & -\frac{A_{S1}}{C_{h_S}} & 0 & -\frac{1}{2} \frac{\gamma g_R^*(t)c_{R}}{\sqrt{|\zeta_3^*(t) - f_C|}}
}
\end{equation}
\begin{equation}
\setstackgap{L}{2.1\baselineskip}
\fixTABwidth{T}
\mathbf{A}_L(t) =
\bracketMatrixstack{
0 & 1 & 0 & 0 \\
\frac{c_1x_3^*(t) - k_S}{m_\rho} & -\frac{d_S+d_P}{m_S+m_P} & \frac{c_2 x_2^*(t) -A_{S2}}{m_S + m_P} & -\frac{A_{S1}}{m_P+m_S} \\
\frac{\hat V n_P}{\hat x_S C_{h_1}} & \frac{A_{S2}}{C_{h_1}} & -\frac{1}{2C_{h_\delta}} \left( \frac{\gamma A_{\mu}}{\sqrt{|x_6^*(t) - f(\rho t)|}} + \frac{\gamma u_R^*(t)b_{Reg}}{\sqrt{|\zeta_3^*(t) + \zeta_4^*(t)|}} \right) & 0 \\
0 & -\frac{A_{S1}}{C_{h_S}} & -\frac{1}{2} \frac{\gamma u_R^*(t)b_{Reg}}{C_{h_S}\sqrt{|x_3^*(t) - p_C|}} & \frac{1}{2} \frac{\gamma u_R^*(t) m_{\gamma}}{C_{h_\delta}\sqrt{|z_1^*(t) -z_6^*(t)|}}
}
\end{equation}
\end{document}
This is inspired by: Equal spacing in matrices
Now I'd like to have both these matrices formatted equally and aligned. Is there any way to do so? Sorry, I've just started picking up some tabstack knowledge.
Thanks in advance!
