You were heading in the correct direction. Using the binomial theorem and the orthogonality of the basis functions $e^{imx}$ on $[0,2\pi]$, we have
$$\begin{align}
\frac{1}{2\pi}\int_0^{2\pi}\cos^{2n}x\,dx&=\frac{1}{2\pi}\int_0^{2\pi}\left(\frac{e^{ix}+e^{-ix}}{2}\right)^{2n}\,dx\tag 1\\\\
&=\frac{1}{2\pi}\frac{1}{2^{2n}}\,\sum_{k=0}^{2n}\binom{2n}{k}\int_0^{2\pi}e^{i(2k-2n)x}\,dx \tag 2\\\\
&=\frac{1}{2^{2n}}\binom{2n}{n}\tag 3\\\\
&=\frac{1\cdot 2\cdot 3\cdot 4 \cdots (2n-3)(2n-2)(2n-1)(2n)}{(2\cdot 4\cdot 6\cdots (2n-2)(2n))^2}\\\\
&=\frac{1\cdot 2\cdot 3\cdots (2n-1)}{2\cdot 4\cdot 6\cdots (2n-2)(2n)}\\\\
&=\frac{(2n-1)!!}{(2n)!!}
\end{align}$$
as was to be shown!
In arriving at $(1)$ we used Euler's Identity $\cos x = \frac{e^{ix}+e^{-ix}}{2}$
In going from $(1)$ to $(2)$, we used the binomial expansion $(x+y)^n=\sum_{k=0}^{n}\binom{n}{k}x^ky^{n-k}$ with $n\to 2n$, $x\to e^{ix}$, and $y\to e^{-ix}$.
In going from $(2)$ to $(3)$, we used the fact that $\int_0^{2\pi}e^{i(2k-2n)}\,dx=0$ for $k\ne n$ and $\int_0^{2\pi}e^{i(2k-2n)}\,dx=2\pi$ for $k=n$.
Wallis integralsin a search engine. – Did Jul 19 '15 at 08:05