11

Prove that:

$$1-\frac 12+\frac 13-\frac 14+...+\frac {1}{199}- \frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}$$

I know only this method:

$\frac {1}{1×2}+\frac {1}{2×3}+\frac {1}{3×4}+....=1-\frac {1}{2}+\frac {1}{2}-\frac {1}{3}+\frac {1}{3}-...$

But, unfortunately, I could not a hint.

Zaharyas
  • 385
nonuser
  • 496

6 Answers6

6

My method :

$$\left\{ 1-\frac {1}{2}-\frac {1}{4}-...-\frac {1}{128} \right\}+\left\{ \frac {1}{3}-\frac {1}{6}- \frac{1}{12}-...- \frac{1}{192}\right\}+\left\{\frac {1}{5}-\frac{1}{10}-\frac{1}{20}-...- \frac{1}{160}\right\}+...+\left\{ \frac{1}{99}-\frac{1}{198}\right\}+\left\{ \frac{1}{101}+\frac{1}{103}+\frac{1}{105}+...+\frac{1}{199}\right\}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}$$

Zaharyas
  • 385
  • 1
    How do you get the $\frac{1}{102}$? – justabit Nov 03 '17 at 16:12
  • 4
    $\frac{1}{51}-\frac{1}{102}=\frac{1}{102}$ – Zaharyas Nov 03 '17 at 16:21
  • 1
    Each even number is uniquely the product of an odd denomibator appearing with positive sign on the L.H.S., times a power of $2$. This guarantees that each even denominator in the relevant range will appear exactly once on the right side once terms with like odd factors in the denominators are collected from the alternating series. – Oscar Lanzi Nov 03 '17 at 16:41
  • I do not understand much.. – nonuser Nov 03 '17 at 22:40
6

Following @Daniel Fischer's comment: Write $-\frac{1}{2k}$ as $+\frac{1}{2k}-\frac{1}{k}$

we obtain \begin{align*} \color{blue}{\sum_{j=1}^{200}(-1)^{j+1}\frac{1}{j}}&=\sum_{j=1}^{100}\frac{1}{2j-1}-\sum_{j=1}^{100}\frac{1}{2j}\\ &=\sum_{j=1}^{100}\frac{1}{2j-1}+\left(\sum_{j=1}^{100}\frac{1}{2j}-\sum_{j=1}^{100}\frac{1}{j}\right)\\ &=\sum_{j=1}^{200}\frac{1}{j}-\sum_{j=1}^{100}\frac{1}{j}\\ &\color{blue}{=\sum_{j=101}^{200}\frac{1}{j}} \end{align*}

Note: With respect to a comment from OP a small supplement to @Zaharyas nice approach.

We consider a smaller sum to better see what's going on. The following is valid \begin{align*} 1-\frac{1}{2}& +\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{13}-\frac{1}{14}+\frac{1}{15}-\frac{1}{16}\\ &=\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}\tag{1} \end{align*}

The main idea is to reorder the left-hand side of (1) and organise it in blocks. Each block starts with a fraction with an odd denominator as leader and we put all numbers within a block where the denominator is a power of two of this odd denominator.

We obtain \begin{align*} 1-\frac{1}{2}& +\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{13}-\frac{1}{14}+\frac{1}{15}-\frac{1}{16}\\ &=\underbrace{\left(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}\right)}_{\color{blue}{=\frac{1}{16}}} +\underbrace{\left(\frac{1}{3}-\frac{1}{6}-\frac{1}{12}\right)}_{\color{blue}{=\frac{1}{12}}}\\ &\qquad+\underbrace{\left(\frac{1}{5}-\frac{1}{10}\right)}_{\color{blue}{=\frac{1}{10}}} +\underbrace{\left(\frac{1}{7}-\frac{1}{14}\right)}_{\color{blue}{=\frac{1}{14}}}+\frac{1}{9}+\frac{1}{11}+\frac{1}{13}+\frac{1}{15}\tag{2}\\ &=\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}\tag{3} \end{align*}

Comment:

  • In (2) we observe the right-hand side is organized into $8$ blocks. The first four blocks contain more than one number and four blocks which consist of one number only. We note that each natural number $a\in \mathbb{N}=\{1,2,3,\ldots\}$ has a unique representation as power of two times an odd number. \begin{align*} a=b\cdot 2^k\qquad\qquad k\geq 0, b\text{ odd} \end{align*} The second block in the right-hand side of (2) for instance has the representation \begin{align*} \left(\frac{1}{3}-\frac{1}{6}-\color{blue}{\frac{1}{12}}\right)&=\left(\frac{1}{3\cdot 2^0}-\frac{1}{3\cdot2^1}-\frac{1}{3\cdot2^2}\right) =\frac{1}{3}\left(1-\frac{1}{2}-\frac{1}{4}\right)\\ &=\frac{1}{3}\cdot\frac{1}{4} \color{blue}{=\frac{1}{12}} \end{align*} This unique representation asserts that we take all fractions $\frac{1}{k}$ with $1\leq k\leq 16$ in the right-hand side of (2).

    Another nice fact is that the value of each block is given by its right-most entry. This is due to the finite geometric series formula. We obtain \begin{align*} 1-\frac{1}{2}-\frac{1}{4}-\cdots\color{blue}{-\frac{1}{2^{k}}} &=1-\frac{1}{2}\left(1+\frac{1}{2}+\cdots+\frac{1}{2^{k-1}}\right)\\ &=1-\frac{1}{2}\sum_{j=0}^{k-1}\frac{1}{2^j}\\ &=1-\frac{1}{2}\cdot\frac{1-\frac{1}{2^k}}{1-\frac{1}{2}}\\ &\color{blue}{=\frac{1}{2^k}} \end{align*}

  • In (3) we write for each block the corresponding fraction and reorder the numbers.

Keeping all this in mind we can now show the original identity using sigma notation. We obtain \begin{align*} \color{blue}{\sum_{j=1}^{200}(-1)^{j+1}\frac{1}{j}}& =\sum_{j=1}^{50}\left(\frac{1}{2j-1}-\sum_{k=1}^{\left\lfloor\log_{2}\left(\frac{200}{2j-1}\right)\right\rfloor}\frac{1}{(2j-1)\cdot 2^k}\right) +\sum_{j=51}^{100}\frac{1}{2j-1}\tag{4}\\ &=\sum_{j=1}^{50}\frac{1}{(2j-1)\cdot 2^{\left\lfloor\log_{2}\left(\frac{200}{2j-1}\right)\right\rfloor}}+\sum_{j=51}^{100}\frac{1}{2j-1}\tag{5}\\ &=\sum_{j=51}^{100}\frac{1}{2j}+\sum_{j=51}^{100}\frac{1}{2j-1}\tag{6}\\ &\color{blue}{=\sum_{j=101}^{200}\frac{1}{j}} \end{align*}

Comment:

  • In (4) we use the fact that we have $200$ summands, $100$ with odd denominator and $100$ with even denominator. We take the $100$ odd as leaders of $100$ blocks. Thereby we have $50$ blocks with more than one term and $50$ block with one term only. This corresponds to the representation in (2).

  • In (5) we use that each block is given by the right-most term as indicated by braces in (2) and also shown in the comment-section above. We can verify the expression $(2j-1)\cdot 2^{\left\lfloor\log_{2}\left(\frac{200}{2j-1}\right)\right\rfloor}$ with $$\text{Sort[Table[(2*j-1)*2^Floor[ld(200/(2*j-1))],{j,1,50}]]}$$ in Wolfram Alpha and get \begin{align*} 102,104,106,\ldots,198,200 \end{align*}

  • In (6) we use the unique representation of even numbers as odd number times a power of two and collect them in sorted order as we did in (3).

Markus Scheuer
  • 108,315
3

$$\sum_{k= 1}^{200}(-1)^{k+1}k^{-1}=1-\frac 12+\frac 13-\frac 14+\cdots+\frac {1}{199}- \frac{1}{200}=\frac{1}{101}+\frac{1}{102}+\cdots+\frac{1}{200}=$$ $$\color{blue}{\left(1+\frac 13+\frac 15 +\dots+ \frac 1{199}\right)-\left(\frac 12+ \frac 14+\frac 16\cdots+\frac {1}{200}\right)}=\color{red}{\frac{1}{101}+\frac{1}{102}+\cdots+\frac{1}{200}}$$

\begin{align} \tag1 \color{blue}{\sum_{k=1}^{100}\frac{1}{2k-1} - \sum_{k=1}^{100}\frac{1}{2k}} &= \color{red}{\sum_{k=101}^{200}\frac{1}{k}}\\ \tag2 &= \sum_{k=1}^{200}\frac{1}{k} - \sum_{k=1}^{100}\frac{1}{k}\\ \tag3 &= \left(\sum_{k=1}^{100}\frac{1}{2k} + \sum_{k=1}^{100}\frac{1}{2k-1}\right) - \sum_{k=1}^{100}\frac{1}{k}\\ \tag4 &= \frac{1}{2}\sum_{k=1}^{100}\frac{1}{k} + \sum_{k=1}^{100}\frac{1}{2k-1}- \sum_{k=1}^{100}\frac{1}{k}\\ \tag5 &= \sum_{k=1}^{100}\frac{1}{2k-1}- \frac{1}{2}\sum_{k=1}^{100}\frac{1}{k}\\ \tag6 &= \underbrace{\color{blue}{\sum_{k=1}^{100}\frac{1}{2k-1}- \sum_{k=1}^{100}\frac{1}{2k}}}\\ &\quad\quad\quad\sum_{k= 1}^{200}(-1)^{k+1}k^{-1}\\ &&\Box \end{align}

1

Hint: prove by induction that $\sum_{i=1}^{2n}\frac{(-1)^{i-1}}{i}=\sum_{i=n+1}^{2n}\frac{1}{i}$.

J.G.
  • 115,835
1

We have \begin{split} &&1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots + \frac{1}{199} - \frac{1}{200} \\&=& \left(1 + \frac{1}{3} + \frac{1}{5} +\cdots + \frac{1}{197}+\frac{1}{199} \right) - \left(\frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{200}\right)\\ &=& \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{199} + \frac{1}{200}\right) - 2 \cdot \left(\frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{200}\right)\\ &=&\left(1 + \frac{1}{2} + \cdots \frac{1}{100}\right)+\left( \frac{1}{101}+\cdots +\frac{1}{199} + \frac{1}{200}\right) - \left(\frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{100}\right)\\[10pt] &= &\frac{1}{101} + \frac{1}{102} + \cdots + \frac{1}{200}\end{split}

Guy Fsone
  • 23,903
0

Just discovered a neat solution:

Add $ 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{100} $ to both sides and it will be easy to see they are indeed equal.

Because on LHS, every negative term can be added with a positive term twice its size. Examples $$-\frac{1}{2} + 1 = \frac{1}{2}$$ $$-\frac{1}{4} + \frac{1}{2}= \frac{1}{4}$$ $$-\frac{1}{6} + \frac{1}{3}= \frac{1}{6}$$

and so on.

sku
  • 2,643