Substitute
$$u = \sec t + \tan t \implies t = 2 \arctan \frac{u-1}{u+1} \implies dt = \frac{2\,du}{1+u^2} \\
\implies \sin t = \frac{u^2-1}{u^2+1} \text{ and } \cos t = \frac{2u}{u^2+1}\quad.$$
Then for $0 \le \theta < \dfrac\pi2$, we have
$$\begin{align*}
I (\theta) &= \int_0^\theta \frac{\sin^3t}{\sin^3t+\cos^3t} \, dt \\
&= \int_1^{\phi:=\sec\theta+\tan\theta} \frac{\frac{\left(u^2-1\right)^3}{\left(u^2+1\right)^3}}{\frac{\left(u^2-1\right)^3}{\left(u^2+1\right)^3} + \frac{8u^3}{\left(u^2+1\right)^3}} \, \frac{2\,du}{1+u^2} \\
&= \int_1^\phi \frac{2\left(u^2-1\right)^3}{u^8-2u^6+8u^5+8u^3+2u^2-1} \, du \\
&= \int_1^\phi \left(\frac23 \frac{2u^3-3u^2+2u+1}{u^4-2u^3+2u^2+2u+1} - \frac13 \frac{u+1}{u^2+2u-1} - \frac{u-1}{u^2+1}\right) \, du \\
&= \int_1^\phi \left(\frac13 \frac{d\left(u^4-2u^3+2u^2+2u+1\right)}{u^4-2u^3+2u^2+2u+1} - \frac16 \frac{d\left(u^2+2u-1\right)}{u^2+2u-1} - \frac12 \frac{d\left(u^2+1\right)}{u^2+1} + \frac{du}{u^2+1}\right) \\
&= \frac16 \ln\frac{\left(\phi^4-2\phi^3+2\phi^2+2\phi+1\right)^2}{\left(\phi^2+2\phi-1\right) \left(\phi^2+1\right)^3} + \arctan \phi - \frac\pi4 \\
&= \bbox[1pt, pink]{\frac16 \ln \frac{\left(\cos\theta\sin\theta-1\right)^2}{\cos\theta+\sin\theta} + \arctan\left(\sec\theta+\tan\theta\right)} - \frac\pi4 \\
&= \frac16 \ln \frac{\left(\cos\theta\sin\theta-1\right)^2}{\cos\theta+\sin\theta} + \frac\theta2
\end{align*}$$
which indeed yields $\displaystyle\lim_{\theta\to\tfrac\pi2^-}I(\theta) = \boxed{\dfrac\pi4}$.