Here are two Asymptote solutions for comparison with TikZ or pgfplots incoming answers as you are expected.
- Asymptote has built-in cubic root function, so just go straight with it

// http://asymptote.ualberta.ca/
unitsize(1cm);
import graph;
real f(real x) {return cbrt(x^3-x^2);} //<<< the cubic root function
path g = graph(f,-2,2,n=1000,operator --); // operator .. is not good around (0,0)
draw(g,red);
axes("$x$","$y$");
- Asymptote has
contour module for graphs of implicit function.

unitsize(1cm);
import contour;
import graph;
real F(real x, real y) { return x^3 - x^2 -y^3; }
guide[][] g = contour(F,a=(-2,-2), b=(2,2), new real[] {0});
draw(g[0],magenta);
axes("$x$","$y$");
Update Using TikZ with sign function.

\documentclass[tikz,border=5mm]{standalone}
\begin{document}
\begin{tikzpicture}[declare function={f(\x)=\x*\x*\x-\x*\x;}]
\draw[->] (-3,0) -- (3,0) node[below right]{$x$};
\draw[->] (0,-3) -- (0,3) node[below left]{$y$};
\draw[orange,thick] plot[domain=-2:3,samples=300] (\x,{sign(f(\x))*pow(abs(f(\x)),1/3)})
;
\end{tikzpicture}
\end{document}
My bad and tricky code: In trying to use TikZ, I have to use a trick to get rid off negative base in power function, and joining pieces of the graph in different domains.
\documentclass[tikz,border=5mm]{standalone}
\begin{document}
\begin{tikzpicture}[samples=100,smooth,
declare function={f(\x)=\x*\x*\x-\x*\x;}
]
\draw[->] (-3,0) -- (3,0) node[below right]{$x$};
\draw[->] (0,-3) -- (0,3) node[below left]{$y$};
\draw[orange,thick]
plot[domain=-2:1] (\x,{-pow(-f(\x),1/3)})--(1,0)--
plot[domain=1:3] (\x,{pow(f(\x),1/3)})
;
\end{tikzpicture}
\end{document}
(x*x-x)*xis faster and more accurate thanx^3-x^2. Try to avoid using^when computing. It should be noted thaty^3=xhas three possible solutions. generally one real and two complex. – John Kormylo Feb 09 '21 at 22:57