Given $a, b \in \mathbb{R}$, prove that
$$\frac{|a + b|}{1 + |a + b|} \le \frac{|a|}{1 + |a|} + \frac{|b|}{1+|b|}$$
When does equality hold?
The only useful thing I could get (using the triangle inequality) is:
$$\begin{align}1 + \left|\left(a + \frac{ab}{2}\right) + \left(b - \frac{ab}{2}\right)\right| &\le 1 + \left|a + \frac{ab}{2}\right| + \left|b - \frac{ab}{2}\right|\\ &\le 1 + |a| + |b| + |ab|\\ &=(1 + |a|)(1 + |b|)\end{align}$$
But it seems to be inapplicable! Any ideas?